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1% Introduction

SCHOONSCHIP is the major algebra system in use
at CERN. It was designed ten years ago by
M. Veltman. It is set up to do long -- but in
principle straightforward -- analytic calculations.
It is very fast in execution and very economical in
storage. It can easily deal with expressions of
the size of 10* to 105 terms. This is achieved by
writing it almost entirely in (CIC 6000/7000)
machine code.

SCHOONSCHIP runs at present at 25 computer in-
stallations. Its major applications are in the
field of high-energy physics, but it is suffi-
ciently general to be used for other calculations.
At CERN it has been heavily used in high-energy
physics: computation of traces of Dirac matrices,
renormalization of Yang-Mills fields, multi-
dimensional integrations in sixth-order quantum
electrodynamics. Moreover, problems in statistics
and general relativity were solved with it.

2. General structure of a SCHOONSCHIP program

A SCHOONSCHIP program consists basically of a
main expression, and a set of substitutions to be
applied on it.

Example:

Computation of
A-B
j (A+By) * (By+2#+y*)dy
0

could be obtained by giving

7 INT= (A+BxY)* (B*Y+2+Y**2)
ID, Y#*3=Y**4/4

ID, Y#*2=Y**3/3

ID, Y**1=Y**2/2

ID, Y=A-B

* BEGIN

Remarks:

- INT is the integrand. The integration itself is
done by replacing each yo - yn+1/(n+l). The
resulting function is then taken at the point
y = A-B. In other words, every operation has to

The mechanism of the calculation goes via a scan-
ning and substitution procedure:

7 in the first column indicates that the ex-
pression which follows has to be examined for
substitutions;

ID in the first two columns defines the following
expression as a substitution;

*  in the first colum is the instruction to
start the calculation.

The intermediate results after each substitution
are:

INT=A*B*Y+2 #AxY %+ 2+B# 2 %Y # %24 2%BxY**3
INT=A*B*Y+2 xA*Y #%2+B# 22 «Y»#2+1/2#BxY»+4
INT=A#B*Y+2/ 3#A+Y ##3+1/3%Bx#2xYxx3+1/2+BxYx*4
INT=1/2*A*B*Y*%2+2/ 3*AxY**3+1/3%Bxx2xY**3
+1/2*B*Y**4
=-1/6+AxBxx3-AxBr#4+Axx2xBrx2+2xAx+2*Bx+3
~3/ 2%Ax*3%B-5/3xA**3xB>x2+2/3xA**4
+1/2xA**4xB+1/6%B**5

Each term of the intermediate results is inspected
for the next substitution. If its left-hand side
matches, the replacement is made.

It is important to consider whether the specified
substitutions should be applied simultaneously or
consecutively.

ID as keyword for a substitution implies that
the substitution will be applied only after
the previous substitution is performed (and
its associated expressions in brackets worked
out).

AL as keyword for a substitution implies that the
substitution will be applied simultaneously
with the previous substitution. Efficiency
imposes the use of AL as often as possible.

Examples:

7 El=Y+Y**2
ID, Y##2=Y**3/3

intermediate result: E1=Y+Y*3/3

1D, Yxx1=Y*%2/2
* BEGIN

final result El=Y#*#2/2+Y*%3/3

be fornulated in terms of elementary substitutions.

*) SCHOONSCHIP: A CDC 6600 program for symbolic evaluation of algebraic expressions. CERN preprint by
M. Veltman, 1967. CERN Program Library R 201.
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or

Z E1=Y+Y*%2
ID, Y**2=Y*%3/3
there is no intermediate result
AL, Y**1=Y*%2/2
* BEGIN

final result El=Y**2/2+Y**3/3

or

Z E1=Y+Y*%2
ID, Y**1=Y*%2/2
there is no intermediate result
AL, Y**2=Y**3/3
* BEGIN

final result : El=Y#%2/2+4Y*%3/3

or

Z E1=Y+Y*%x2 ;
ID, Y**1=Y**2/2 -
intermediate result: - El1=3xY*%2/2
ID, Y**2=Y*%3/3
* BEGIN :
final result E1=Y**3/2

3% Basic statements in SCHOONSCHIP

The elementary operations, out of which every
SCHOONSCHIP calculation has to be built up, are:

- Multiplication and addition of polynomials

Input

Z Z=(A+B)**2
Output

Z=A**2+2 *A*B+B**2

The quantities involved can be algebraic
symbols, indices, non-commuting functions or
vectors.

- Substitutions

‘Input

Z Z=F(A,B)-A**2+F(X,Y)
ID, F(A,B)=A**2+B**2
Output

Z=B**2+F(X,Y)

The replacement is made when the arguments match.

In contrast to this, arguments can be dummies.
They are denoted with a + sign behind their
names. U+ means: for all values of U.

Input

Z Z=F((A+B), (A-B))+F(X,Y)
ID, F(U+,V+)=U*V

Output

L=A**2-B**2+X*Y

- Pattern matching

Input
L Z=Ax*4*CxB**2

ID, Ax*2*Cx*2*B=A2C2B
ID, A**4*C*B=A4CB

ID, C*B**2=CB2

Output

Z=A**4*CB2

A more complicated example:

Input

Z Z=Ax*4*F(2,4)*C**3+A*F(1,3) *C+A**3*F(3,3) *C**4
ID, A**N+*F(N+,M+)*C=AFC(N,M)

Output
Z=A**4*F(2,4)*C**3+AFC(1,3)+A**3*F(3,3)*C**4

- Special commands in order to:

Calculate traces;

Perform complex conjugation;

Make partial fraction decomposition;
Compare coefficients of terms;

Give a weight to terms; .
Rearrange function arguments, etc.

- Finally, there exists a set of built-in func-
tions:

Gamma matrices;

Spin Y%, and spin % spinors;

Summation function (=ZI5=k f;);
Kronecker delta, binomial function, etc.

Example:
Expansion in power series up to tenth order in y of

sin (3y?) - [sin [% y]]z

could be done as follows:

Z EXPAN=FS((3*Y**2))* (FS((4*Y/3)))**2
*FC((2%Y))/Y**4*A*B

ID, FS(Z+)=Z-7**3/6+7**5/120-Z%*7/5040
+72%%9/362880-7**11/39916800

AL, FC(Z+)=1-7**2/2+7%*4/24-7%+6/720+Z**8/40320
-Z*+10/3628800

AL, AsY**(-10)

ID, Y=0

AL, B=Y*+10

* BEGIN

cos (2y)/y"*

Remarks:

- The factors A and B are added to make the
truncation of the series possible. The state-
ment Y=0 sets all POSITIVE powers of Y to zero.
N.B. There are more efficient ways to do the
truncation of a series.

- Output is always given in the format:

Name = factors * (term + term + ...)
+ factors * (term + term + ...)

+ eve gy

where '"factors' and ''term'" are purely multi-
plicative; 'factors' can be empty.

4. The calculation mechanism

Consider the following example:
Z EXP=(A+B+....+Y+Z)**4
ID, A=Z
ID, B=Z

ID, Y=Z
* BEGIN




It would be very inefficient to calculate
(A+B+....+Y+Z)**4, then to do the first substitu-
tion on this result, then the second substitution

on the new result, etc. The reason is that each of
those intermediate results is so long that they will
have to reside on disk.

The way SCHOONSCHIP performs such a calculation
is the following: EXP is generated term by term,
by spec1fy1ng pointers to the appropriate factors
Each term is inspected for substitutions. All
substitutions are applied and worked out before the
next term is generated.

EXP-———A4 Z4 output space
\ASB Zop=— gt " "
e e " "
Z4 " ”n

At the moment a term arrives in the output space,
a check is made to see whether it adds up with any
of the previous terms.

The important point is that we have only one
term at the time in memory, rather than long inter-
mediate expressions. The same philosophy applies
to new expressions, arising from substitutions.
They are also dealt with term by term. This leads
roughly to a tree structure.

Example:

Z Z=A1+B1+Cl

ID, Al=A11+A12+A13

ID, A13=A131+A132

ID, B1=B11+B12+B13+B14
* BEGIN

will produce terms for the output in the following
order:

Z Al All output space
\Alz " "
A13 Al31 ) A
3 A132 " "
Bl Bl1 A L
§B12 " "
4 B13 " "
Bl14 " "
Cl " "

The example goes as follows:

All the intermediate terms overwrite each other as
soon as they are no longer needed. This calculation
mechanism can become very inefficient in certain
cases. Consider the following example:

Z EXP=(A+B)*+10
ID, A=B
* BEGIN

The substitution A=B is applied 2'° =~ 1000 times,
while the intermediate expression would involve only
11 terms. In such cases, the calculation should be
split into two parts, so as to force the interme-
diate expression to be constructed. The substitu-
tion will then be applied 11 times.

Z EXP=(A+B)*+10
* YEP

ID, A=B

* BEGIN

Any card with a * in the first colum initiates the
evaluation of the Z expression. The keyword on that
* card determines what will be done with the result
afterwards:

* BEGIN: The result is thrown away.

* NEXT : The result is stored for later use.

* YEP The result is considered as the Z expres-
sion for the next set of substitutions.

For our example, this means the following:

During the first part A!°, A°B, A°B, A®B?, ..., AB?,
B!® (in that order) will be generated and brought to
the output space for addition or cancellation. The
resulting expression has 11 terms and is transferred
from the output space back to the input via the disk.
Now the substitution A=B is applied to each term of
the (intermediate) expression.

The appropriate use of * YEP statements is
crucial for the execution time of a program. The
number of substitutions performed depends much on it.
However, the amount of additional disk reading and
writing has to be considered as well.

5. Memory overflow

No direct 1limits on the size of input or out-
put expressions are imposed. An overflow mechanism
to use the disk comes automatically into action.

How the output overflow works can be seen from
the following example.

Assume the output is nearly full (after doing
Garbage Collection) and contains A**3 as the only
term depending on A. As the calculation proceeds,
the following terms are produced:

A**4: can still fit in memory, but occupies the
last free words;

A**2: cannot be kept in memory. Goes to the over-
flow tape (tape 4, usually a disk file);

A**3: adds up with the A**3 in core;

A*=*5: goes to tape 4;

A**2: goes to tape 4;

Each term is compared with all terms in the output
space. If it does not add up, it is sent to the
overflow tape. However, no test is made whether

that term adds up with a term already stored on that




tape. In other words, tape 4 will contain in this
example:

Axx2, A%35, A**2

All terms on the overflow tape are different from
those in the output space. When all terms are gen-
erated, the output space can be emptied (e.g. by
printing). Now terms are read in from tape 4 and put
in the output space, while addition and cancellation
can occur. New overflow is written on tape 5. The
output space is again emptied, and by repeatedly in-
terchanging the function of tape 4 and tape 5 this
mechanism can go on until all terms are printed.

Long input expressions reside on disk and have
only one record in core. It is perfectly well
possible to multiply two such expressions, the only
risk being ... disk overflow!

6. Linking of SCHOONSCHIP programs

Rather than printing and discarding the content
of the output space, it is also possible to save it
for the next part of the calculation or for a later
Tun. %

At the end of a calculation step, one can
transfer results from the output back to the input.

Example:

Z EXP(U,V)=U*V

KEEP EXP

* NEXT

Z PR=(EXP((A+B), (A-B)))**2

Results to be used in a later run can be written
onto disk and then catalogued as permanent file.
This allows one to split up a long calculation into
smaller pieces or to restart it at an earlier point.
Doing so pays off in turnaround time, at least in
the CERN computer centre. (N¥.3. CERN XJOB =express
job: 30K memory and 64 sec 6600 CP time. Turn-
around =~ 15 min.)

This facility has proved to be essential in
many calculations, e.g. in multidimensional inte-
grations where the integration scheme is in fact
found by trying different substitutions over and
over again (typically 100 times).

All the above-mentioned results are kept in the
internal SCHOONSCHIP notation, rather than in
character code. This eliminates repeated input scan
and conversion.

SCHOONSCHIP subprograms -- possibly involving

dummy variable names -- can be stored on disk (in
character code), and then form a kind of library.

7. Comments on some SCHOONSCHIP facilities

a)  SCHOONSCHIP always attempts numerical evalua-
tion of an expression before doing algebra on
it. For example, (1+2)*+*10 is not computed
in the same way as (A+B)**10. DX is a built-
in function which generates a call to sub-
routine EXTRA, to be given by the user in
FORTRAN.
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b) The user can add his own ''built-in functions'
(called X expressions).

c) DO LOOPS are available. Their format can be
seen from the example:

DO J=10,1,-1
ID, A**J=A**J/A
* YEP

ENDDO J

d) There is no branching possible in a SCHOONSCHIP
program. However, this can easily be overcome
by using selective substitutions, e.g. IFSMA,
IFGRE, IFEQU tests on the coefficient of each
term, and appends a symbol to each successful
term. COUNT computes the weight N of each
term and appends to it, e.g. F(N) or A*»*»N... .
Very complicated pattern matching can then be
used to pick out a specific term

Ax#N+*Br*N+ *C**M+*F (A, B, N+ ,M+)=. ..

e) The "freezing" of the expression

Z=V11*V12*....*(A11+A12+...)
+V21%V22%. ... % (A21+A22+...)

+

leads to

Z=V11*V12*....*DF(Z,1)
+V21*V22+....*DF(Z,2)

+

Now substitutions on Vj; can be done (which
may involve DF). DF remains unchanged. At
the end DF is again replaced by the Aj; values
(with the command EXPAND). Appropriate use of
this facility can save much execution time.

8. Example of a realistic calculation

The following eigenvalue problem was encoun-
tered by B. Schorr at CERN. Mathematical formula-
tion of the problem: to determine the distribution
of the statistic of a certain two-dimensional
goodness-of-fit test of the von Mises type, the
eigenvalues A of the following integral equations
are of great importance:

11
o(t1,t2) = A IJ.KI(SI:SZ; ti1,t2)¢(s1,52) ds; ds:
00

where

Ki(s1,523 t1,t2) = min (s;,t;) min (sz,tz2) -si1s2thte
(1)
If

Kn+; (S1,S25 ti,t2) =
; 11

L[ Kn(s1,S2; u1,uz2)K;(ug,uz; ti,tz) duy du
00 ;

[}

(2)

forn=1, 2, ..., it can be shown that
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Suppose L is known, then Aj can be calculated.

¥.B. min (a,b) = aH(b,a) + bH(a,b), with H being
a theta function:
H(a,b) = 1 when a > b
1 when a =b
0 when a < b

Remarks:
* This calculation can be performed by repetitively
applying the following formulae:
1
n
J'UIH(SI,UI) * H(ty,u;) du,
0
* S&ﬁ-l i tri]+1 s 51'11+1
n+1l nEEali

* H(sl :tl)

1

Nn+1
J‘UI}H(SI:UI) du; = %T-]—.
0

1
n+l
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dl.l1 =

1
0
which can be given as substitutions.

* The important point to note is that the H-
functions do not commute in SCHOONSCHIP. In
order to calculate X,(s;,S;; t;,t2) we have to

integrate terms of the type:
uf*uf+H(s1,u;)*H(sz ,uz) *H(ty ,uy ) *H(t 2 ,uz)

Applying on this the pattern matching substitution:

ID, UL#**N+*H(S1,UL)*H(T1,Ul)=...

will not lead to a replacement, as the H-
functions do not commute. This non-
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commutativity can be (partly) cancelled by
specifying the keywords:

AINBE (allow in between) or
ADISO (allow disorder).

However, in such cases the scanning nechanism
becomes much more complicated and time-consuming.
Rewriting the program in terms of algebraic
symbols -- which automatically commute -- like
HS1U1, HT1U1,... speeded up the calculation with
a factor of 2.

The calculation mechanism involved is very easy
and straightforward. However, the fact that the
final result is a number and not a formula sug-
gests that it could be worth while to investigate
the possibility of tackling this problem com-
pletely numerically. The algebraic calculation
blows up very fast:

Ks has 700 terms and no longer fits in the input
space (3500 words);

K¢ has 1200 terms and no longer fits in the out-
put space (5000 words);

Ky1 has 6500 terms. Owing to overflow of input
and output space, 2000 records were written on
disk by that time.

The whole calculation (up to order 11) required
~500,000 multiplications of temms and took

288 seconds on a CDC 7600 (= 14 times faster
than a 6400). Clearly, with this method it is
impossible to get much further.

Fortunately, a completely numerical solution was
found by B. Schorr and 100 eigenvalues were
calculated in FORTRAN in a few minutes.

The listing of the SCHOONSCHIP program that reads
the last calculated K, from disk and replaces it
by Kn+; is given in the appendix.
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H. Strubbe, CERN-DD/73/10.




APPENDIX

L EXaMPLE. AN EIsziVALUEt FRU3LEM,.
C THIS PRULRAM oLUMPUTES A WEW ITERATION FOR K o
ENTER COMMUN

¢ T4z RESULTS CF TdAZ PREVIUUS RUN ARE ENTERED.
* BEGINW

INDEX N

SYMeJLS U1,U2451,52,T1,T2

FUNCTIONS H,L

C LEFINITIUW UF KL « SEt FORMULA 1.

7 K1(51,S29T15T2) =SL*S2-S1+S2%T1*¥T2+S2*T1*H (S1,T1) -S1*S2*H(S1,T1)+
S1*TE*H(SZ, T2) -S1*S2*H(Sc,T2) +T1*T2*H (S1,T1)*H(S2,T2) +S1*S2*H(S1,T1)*
HUS2,T2) =S1*T2*H(SLsT1) *H(S2,T2) =S2*T1¥K(S1,T1) *H(S2,T2)

KEEF K1

% NexXT

C (JNSTRUCTLOW UF THE NEXT K o SEE FURMULA 2.

NAMES K
L K{S14S2,T14T2)=K(51,52,U1,U2)*¥K1{T1,T2,ULl,U2)

IDy AINBE,y UL¥*N+#*H(S1,U1) *A(T1,U1)=S1*¥S1**N/(N+1) $(TL1*T1¥*N=-S1¥S1*¥*N)*
H(S1,T1)/ (N+1)

ALy AINBE, UZ**N+*H(S2,U2) *H(T2,U2)=S2*S2¥*N/ (N+1) +(TZ2¥T2**N=-52¥*S2**N) *
(5S¢, T2)/ (N+1)

ALy AINBZ,y H(S1yUL)*H(T1,U1)=514#(T1-S1)¥H(S1,T1)

ALy AINBEy H(S23U2)*H(T2,U2)=S2+{T2-S2)*¥H(S2,T2)

AL, UL*F*N+*H(S1+,U1)=S1*S1**N/(N+1)
ALy UZ**N+*H(S2+,U2)=S2*SZ**N/ (N+1)
AL, Ul**N+=1/ (N+1)

Al U2¥*N+=1/ (N+1)

AL, H(S1+,S2+)=S1

KEEF K1

NPR1INT K

* NEXT

C INTEGRATIGN OF K « Sct FORMULA 3.

NAMES K
Z ITcR=ITER+1
74 L(Sl,SZ)=K(Sl,SZ;Sl,SZ)

1D, H(S14,S2¢)=y
AL, S1¥#N+=1/ (N+1)
AL, S2¥*¥N+=17 (N+1)
* BEGIN

WRITZ COMMUN

C THACZ NEW RcSULTS ARE WRITTEN ON DISK TG 8E CATALOGUED.
* END
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