el OOMOR

ECODU20)
BUDAPEST
N 23-25 September, 1975

PROCEEDINGS

—_Jl,__, > o
gx ,'mﬁ%m&aag_ﬁ. s

Host : HUNGARIAN ACADEMY of SCIENCES

ANALYTICAL COMPUTATIONS AND THE SCHCONSCHIP PROGRAM

H. Strubbe
European Organization for Nuclear Research
Geneva, Switzerland

Session: 31C

I. Introduction . Symbolic program :
For many mathematics and physics problems one is inte- =
rested in knowing the general analytical solution, Z A2=(A1+C)(A1-C)

rather than having the zumerical answer in a few points. 1D, SALSAsE
Often the use of analytical methods simplifies numeri- Lo ot
cal calculations. For instance the calculation of ID, B3
ID, A=2 :
R=(N+b)#%10 — Nxx10 The intermediate results, line after line, are :
=A% %2-C%%2

can become very difficult when done: purely numerically
if-N and b are numbers and N>>b. However, applying
first algebra gives

AD=A¥%D+D¥\XB+BX X2-CExRD
A2=A%%2+2% p ¥B+B¥*2-1
A2=A%%2+6%A+8
R=10xN#%9%b + smaller terms A2=2l
Note the following points :

and now t i i i . 5 i :
be numeracel.calonlation is easy = the calculation goes exactly in the reversed order.

: = i i b, L7
Unfortunately, many computer users seem to.consider Lheexprensionitoibe calugEc Ss precrigd Ty e

their computer only as a "big pocket calculator". They - expressions preceded by "ID" are substitutions to be
keep on doing their analytical calculations by hand, applied onithe Z-expression. _ ’239
using a pile of sheets of paper, while making at least - the final result of z calculation is not necessarily i

one error per page ! one number. The calculation could have terminated

after only one substitution.
The aim of this article is to convince the reader that

in many cases he can do his analytical calculations by
computer as conveniently as he is used to do his nume-
rical computation by computer. :

- the length of the evaluated expression is very hard
" to predict. This leads to special storage problems.

III. SCHOONSCHIP
II. Difference between numerical and analytical The notation of the previous parag?aph referred to th§
3 : SCHOONSCHIP program. It is the major algebra system in
calculations <
use at CERN. It was designed, more than 10 years ago, o

gram that allows one to do calculations with formulae by -seltman S Iviis =etinp o do ™ ong 5 but DS TR S)
in the same way that the FORTRAN compiler allows one to ciple stra%ght forwérd = analytic calcglat19us. = o
do calculations with numbers. (In this context the very fast }n executl?n and very.economlcal La Storape

terms : analytical computations, symbolic computations, It ca?,easlly deal with expressions of the size of 10

symbolic manipulations, algebraic manipulations are all to 10 terms,

assumed to have the same meaning). Let us compare a
FORTRAN program with.a symbolic program.

An "algebraic manipulation system" is a computer pro-

This is achieved by writing it almost entirely in CDC
6000/7000 machine code. The Input/Output is done in

FORTRAN program : _ FORTRAN. The same program (without any adaptations) is
. known to run under CERNSCOPE, CDC SCOPE 3.3, 3.4 and-
A=2 2.0. It uses 20K to 25X (decimal) of memory.
B=3
c=1 SCHOONSCHIP runs at present at 35 computer installations. B
A1=A+B) Its major use is in the field of high energy physics,
A2=(A1+C)=(A1-C) but it is sufficiently general to be used for other
The intermediate results, line after line, are : applications. ;
A=2 : IV. Basic statements in SCHOONSCHIP
B=3 - Most symbolic operatioms can be thought of as substitu-
c=1 tions. For instance, differentiation of powers of Y is
Al=5 done by replacing
A2=2L 3
Note the following points : Y#xN by NsY#x(N-1)
- all variables at the right-hand side of a FORTRAN SCHOONSCHIP provides a large set of different types of
formula have a numerical value before that formula substitutions, some of which will be described here-
is evaluated. ; : after.
- each FORTRAN formula, however complicated it is, A question in the style of : "Can SCHOONSCHIP integra-
will reduce to one number in the end. te ?" gets the same answer as "Can FORTRAN integrate ?".
5 ‘ It is : "Yes, if the programmer knows how to do so and
- interchanging the order of the statements of this gives the appropriate sequence of elementary operations
program leads to an error message of the type : un- to be performed". ;g

defined quantity encountered.

The basic operations, out of which every SCHOONSCHIP
calculation has to be built up, are :

215

g

i I

.

-

S

- Multiplication and addition of polynomials

Input

Z Z=(A+B)*x2
Output
Z=A®¥2+2%A%B+B% %2

The quantities involved can be algebraic symbols, indi-
ces, non—-commuting functions or vectors.

- Substitutions

Input

Z Z=F(A,B)-A%x2+F(X,Y)
ID,F(A,B)=A%%2+B*x2
Output

Z=B¥*2+F(X,Y)

The replacement is made when the arguments match.

They
U+

In contrast to this, arguments can be dummies.
are denoted with a + sign behind their names.
means : for all values -of U.

Input

Z Z=F((A+B), (A-B))+F(X, Y)
1D, F(U+,V+)—U*V

Output

Z=A§§2—B*§2+X*Y

= Pattern matching

Input . g

7 Z=A#%LCxBxxD i
ID,A**2xCx%2%B=A2C2B

ID, A®*LxC*B=ALCB

ID, C*Bx*2=CB2

Output

Z=A%x4%CB2

A more complicated example :

——Input
‘Z Z=A%%L*F(2, h)*C**3+A*F(l 3)*#C+A%*3x%F(3,3)*Cxxl
ID, A**N+*F(N+,M+)#C=AFC(N,M)
Qutput
Z=ARxLxF (2,1) #C*%3+AFC (1,3)+A%*3%F (3,3) %Cxxl

- Special commands in order to :

Calculate traces

"Perform complex conjugation

Mske partial fraction decomposition
Compare coefficients of terms

Give a weight to terms

Rearrange function arguments, etc.

= Flnally, there exists a set of built-in functions :

Gamma matrlces

Spin 3 and spin 3/2 spinors

- Summation function (=Z%_,f:)

Kronecker delta, binomial function, etc.

Examplé 3

Expansion in power series up to tenth order in y of
2
2 5 L L
(3y°) - (s1n 3 y)) - cos (2y)/y

couldibe donée as follows :

Z EXPAN=FS((3*Y**2))*(FS((L*Y/3)))**2
*FC((2%Y))/Y*xL*AxB

ID, FS(Z+)=2-7%%3/6+Z%%5/120-Z%%7/5040
+2%%9/362880-Z%%11/39916800

ID, FC(2Z+)=1- z**a/2+z**h/2h-2**6/720+Z**8/h0320
-Z%%10/3628800

ID, A=Y*#*(-10)

V.

216

1D, ¥Y=0
ID, B=Y%%10
* BEGIN

Remarks :

- The factors A and B are added to make the truncation
of the series possible. The statement Y=0 sets all
POSITIVE powers of Y to zero.

N.B. There are more efficient ways to do the trun-
cation of a series, but this is a nicer illustration.

- Output is always given in the format :

Name = factors # (term + term + ...)
+ factors * (term + term + ...)
TS -

and "terms" are purely multiplica-
can be empty.

where "factors"
tive; "factors"

Representation of formulae in a computer
Assume we want to represent the polynomial :

2.1%ALFAx%3*BETAxCCC**L
+T. 3*ALFA**h*BETA**h*ccc**h*‘iﬂzmiv

A possible convention could be to write in memory the
following string :- .

2.1,ALFA,3,BETA,1,CCC,4,0,7.3,ALFA,L ,BETA,L,CCC,L,Y,2,
U,1,v,1,0,0

Rather than using the actual name of each variable, it
is sufficient to make a namelist and refer to a varia-
ble by its number in the list :

1=ALFA ; 3=CCC 3 h=Y ; 6=V

2=BETA ; 5=U ;

Then the expression becomes :
2.1,1,3,2,1,3,4,0,7-3,1,k,2,4,3,0,4,255,1465140650

Typically, the numerical coefficients are double preci-
sion floating point numbers. The other gquantities can
be packed in order to save space. The zero was put in
as separator between terms. A double zero indicates -
the end of the expression. Algorithms to add or multi-
ply 2 such expressions can now easily be written. They
involve mainly comparlsons of numbers. ;

In fact, the use of a separator inbetween terms is not
very efficient. In order to find the next term, the
entire previous term has to be fetched from storage and
inspected.

A much more appropriate way is the use of a "POINTER"
(symbolized by an arrow). A pointer is nothing but the
address of the next term. In other words, we can go
from one term to the next, simply by following pointers.

term 1
e }”)L

[+] last term

By convention, & pointer with value zero indicates the
last term of the expression.

Another advantage of the use of pointers is that it
makes the ordering of terms very easy. This is e.g.
necessary for the terms in the output space.

A R

o

Assume we have the string : the CERN Program Library, if a small tape (400 ft) is
; ? mailed to them. On the tepe comes then the SCHOONSHHIP
I 3 B3 B2 A program (in source code), its manusl and its updating
‘_,Jf‘_,J'é__,ﬂ‘__)1_“)1 program DOMOR, which is described in the appendix.

Your locel mathematics and physics department might wal

not be aware of the existence of algebra programs. G\
Availability of SCHOONSCHIP at your computer centre x:j:;
might lead to the solution of problems, previously

classified by them as "too difficult" or "too tedious".

Now the term A2 comes in. Rather than moving all terms
in order to allow A2 to sit inbetween A3 and A, it is
sufficient to change one pointer :

REFERENCES

B B ;
N NN . 1. H. Strubbe. Manual for SCHOONSCHIP. A CDC 6000/7000 .
Program for symbolic evaluation of algebrailc express-—
jons. Compt. Phys. Commun. 8 (1974) 1.

2. H. Strubbe. Calculations with SCHOONSCHIP. Procee-
dings of the "Third Colloguium on Advanced Computing

'I. Typical difficulties in algebraic calculations ' . Methods in Theoretical Physics", Marseille, June 1973.
A1l the problems inherent of numerical calculations are
present in this field as well. - 3. H. Strubbe. Internal Mechanism of a SCHOONSCHIP cal-

E culation. Cern-DD/T73/10.
A FORTRAN user will normally not be bothered if

3%(1/3)-1 leads to 10750 as result, but an algebra 4. H. Strubbe. Conversion of Jobs from 6000 RIOS to

user will be unhappy if (A+B)#*(A-B) leads to 7000 RIOS. Cern Computer Newsletter. T9 (1973) 8.

Ax*2-Bx#2+10 °0%p%B. SCHOONSCHIP uses double precision :

floating point arithmetic. Some systems use infinite APPENDIX. The updating program DOMOR

precision integer arithmetic. Critical numerical cal-

culations can sometimes be made stable by introducing A big program like SCHOONSCHIP (50000 COMPASS statements)

a few symbolic variables, which only after the major "requires for its development and debugging a powerful

cancellations occured, are set to their numerical value. updating program. DOMOR was written for this purpose by
M. Veltman. It is very fast, very powerful and easy to

We are often not sure whether a long result can be use. This will be demonstrated by considering the follo-

further simplified. Imagine for instance a complicated wing (incomplete) example.
expression full of powers of trigionometrical functions. .

To see whether this expression is in fact equal to zero

is very hard. To recognize that it is a full square is

even a worse problem.. This kind of problems is essen- <2
tially unsolved. i T)

Many calculations generate (intermediate) results that
are so long that they overflow the working space in
memory. It is an art to transform the calculation to
avoid this happeuning. Such transformations speed up
the calculation, sometimes by as much as a factor

of 100. Whenever the computer memory is full - after
garbage collection is performed - an overflow mechanism
could sutomatically come into action, which uses the y
disk for further storage. Surprisingly enough, not
many algebra systems have this feature built in ! b g
Consequently, an algebra system should be as small as
possible in order to allow for a maximal workspace.

The ever growing size of CDC system and I/O routines is
a major hinderance in this goal.

If the final result is extremely long anyway, it will
usually be processed further numericeally. Unfortunate-
ly CDC FORTRAN compilers do not like expressions with a
length of several thousands of cards.

There are many more problems in algebraic calculations.
Let me summarize by pointing out that in algebra com—
putations, one has to-be more careful about what one is
doing than in numerical cases. For instance, requiring
the computer to calculate Z=(A+B)*%100 by multiplica-
tion is hopeless. To ask for the Newton expansion
Z=Ax%*100+100%A%*99%B+....goes in a fraction of a second.

VII. Why not try it ? ;
More information on. what SCHOONSCHIP can do is found in =)
its manual (1). A description of some applications is i
given in (2), and details about its internal structure
can be found in (3). SCHOONSCHIP can be obtained from

217

R

.___Remarks

The use of (nested) macro's makes it possible to de-
fine only once &ll common variables. DOMOR will ex-—
pand the COMMON cards into

A BSS 80
B BSS 1
ete.

Several COMPASS instructions can be written on one
line. It is very convenient to use a line per in-
struction word, in particular for the use of "x-1"
references and for the identification of dumped code.

218

+ : SA1 A1+B6 $ SBL Bl+B6 $ BXT X1 $ SAT AT+B6

10 PROGRAM LONG
1 1 DEF CBLANK

1 2 COMMON A(80),B,IBUF1(10),IBUF2(10)
1 3 ENDM

1 & DEF INTEG

1 5 MACRO CBLAKRK

1 6 INTEGER A,B

1 7 ENDM

1 8 MACRO INTEG

1 9 -

110 - FORTRAN program

111 - g :

112 END

2 0 SUBROUTINE LONGER

2 1 MACRO INTEG

2 2 - - :

2083 - FORTRAN subroutine

2 4 -

2 5 END

3 0 IDENT SCHOON

3°1 USE //

3 2 MACRO CBLARK

33 USE =

3 4 copy BSS 1

3 5 SA1 .IBUF1 $ SBL -9

3 6 ZR X1,COPY $ BXT X1 $ NO
3T SB6 1 $ SAT IBUF2

3 8

3'9 NG Bl,*-1 $ ZR BO,COPY
310 END .

Modifications can be done on parts of cards. For
instance to add the variable IBUF3(10) to the COMMON
block,

one uses $ 1 2 /,IBUF3(10)

to add a comment to a COMPASS line

one uses $ 3 6 / RETURN IF EMPTY BUFFER

to copy one word less to IBUF2

one uses $ 3 5 =-9=-8=
Obviously, all facilities of a normal updating pro-
gram (to insert, delete, move, duplicate, ... parts)
are available'as well. The full description of the
DOMOR program is given in (4).

