AX
N
Ty

EuiDDI

' T

CERN - DATA HANDLING DIVISION
0b/73/10
Hugo Strubbe
April, 1973

Internal Mechanism of a Schoonschip* Calculation

Schoonschip is a general purpose "Algebraic Manipulation”
program. It is designed to do long - but in principle straightforward -
analytic calculations. It can be used interactively.

It is very fast in execution and very economical in storage
(25K). This is achieved by writing the program almost entirely in (CDC
6000) machine code. Therefore, the representation of the algebraic
formulae (list structure) and the calculation mechanism can be set up
very efficiently. Input, Output and a few numerical tasks are done in
Fortran.

*Schoonschip: A CDC 6600 program for symbolic evaluation of algebraic
expressions. CERN preprint by M. Veltman, 1967. CERN
Program Library R 201.

(Part of this text to be presented at the Technical
Meeting of SEAS in Rimini, Italy, 9-13 April, 1973)

(v ol 0 Tl

c

I. Introduction to Schoonschip

The following text summarises the basic features of

schoonschip:

SCHUONSCHIP , A PROGRAM FOR ALGEBRAIC MANIPULATIONS,
SCHOONSCHIP , WRITTEN IN 1967 BY M, VELTMAN AT CERN,
SCHOONSCHIP , VERSION OF JANUAKY 1, 1973,

SCHUONSCHIP IS A COMPUTER PROGRAM, MAINLY WRITTEN IN COMPASS , THE CDC 6000
AND 7000 ASSEMBLER LLANGUAGE, IT IS ABLE TO PERFURM ALGEBRAIC MANIPULATIONS
WHAT MEANS THAT IT CAN SOLVE PROBLEMS OF THE FOLLOWING KIND

INPUT OUTPUT

(A+B) axp Axx24Bax2e24A%B

THIS IS ESSENTIALLY ADDITION AND MULTIPLICATION OF POLYNUMIALS,
INPUT OUTPUT

F(A,B)mBxnp CAAABEARXY

TOGETHER WITH
FLA,B)E(A+B) a2
THIS ILLUSTRATES THE SUBSTITUTION FACGTILITY,

INPUT QUTPUT
Axx2xBrxUaCrx3al) Axn2alxD
TOGETHER WITH

Axa2xpBrazX

BrxganpDrxpzy

BaaxdguaCax3z/

THIS REFLECTS THE POSSIBILITY OF PATTERN MATCHING

FINALLY, THE PROGRAM IS ABLE TO DEAL WITH VECTORS, NON COMMUTATIVE QUANTITIES,
GAMMA MATRICES,.,. IT CAN PLRFOKM TRACE CALCULATIONS,NUMERICAL EVALUATION, CUMPLEX
CONJUGATION, ,, .WHAT MAKES IT TO A VERY USEFUL TOOL FOR HIGH ENERGY PHYSICS
CALCULATIONS,

What a Schoonschip orogram looks like can be seen from the example
shown in Appendix 1.

L]

LT,

C
c

c

For

full details see the manual (which is sent on tape, together

with the Schoonschip system and is in fact 100 pages of examples,
to be run as a Schoonschip program)j .

Introduction to Schoonschip's Internal Mechanism

run

Understanding Schoonschip's internal structure can help one to
Schoonschip more efficiently. Understanding its dump in the case

of an error message can help one to figure out where exactly the system
stopped.

a)

At read-in time, name lists are constructed which establish the
correspondence between the print name and the internal numbering
of the variables. These name lists are the arrays NVGEH (for
vectors), NFGEH (for functions), NVIGEH (for indices), NAGEH (for
symbols). The representation of the different kinds of variables
is explained in the following text:

NOTE ON SCHOONSCHIPS INTERNAL STRUCTURE AND MECHANISM

THESE ARE THE CONVENTIONS FOR THE REPRESENTATION OF THE DIFFERENT QUANTITIES
WHICH CAN OCCUR, EVERY QUANTITY XIS 12 BITS LONG
THE HEADING 4 BITS SPECIFY ITS TYPE,
THE TRAILING 8 BITS SPECIFY ITS NAME,

HEADING KIND EXAMPLE
BINARY OCTAL
0000 DUMMY 0007 DUMMY NR 7
0001 INDEX 0405 INDEX NR S
0010 VECTOR 1010 VECTOUR NR 8
0011 OPERATOR 1420 COMPLEX CONJUGATION OPERATOR
0100 SYMBOL 2001 SyYMBOL I
0101 $ EXPRESSION 2425 $21
010 FUNCTION , 5020 FUNCTION DP
5000 END OF ARGUMENT LIST Of FUNCTION
0111 NUMBER 3776 e}
10=x VECTOR COMPONENT 4142 SECOND COMPONENT OF VECTOR NR 3
THE 10 I8 FOLLOWED HY A 5 BIT VECTOR NAME AND A S BIT NUMBER
015 B DOTPRODUCT 6105 DOYPRODUCT OF VECTOR NR 2 AND VECTOR NR 5
THE 11 IS FOLLOWED BY TwO S BIT VECTOR NAMLS
THIS EXPLAINS WHY E,G, 256 SYMBOLS ARE ALLOWED BUT ONLY 32 VECTORS, EACH WITH

AT MOST 32 COMPONENTS,
QUANTITIES 1041 UP YO 1377 INDICATE FUNCTIONS THAT ARE THEMSELVES A
FUNCTION ARGUMENT,

b)

The list structure of the Input can be seen in the following
example:

BEFCALB) * (A+B) **2+%A
The input store is the array IT(2000). LOC(200) is an array
that contains a pointer to each expression (e.g. LOC(5) contains

the pointer to $5, represented by 2405).

(see following page)

LOC (1) = pointer
LOC (2) = pointer

pointer/ least significant exp most significant B] F A B) $2 2
R Coefticidnt Ll R e ek eny , (2001 ,3401,3001,2002, 2001, 3000, 2402,3402 0000 0000 ,
18 42 12 48 12 12 12 12 12 12 12 12 12 12
/
O / 0 By 0 0 0
Luzyg.r-.ni. /,.mt = TR 11720 11‘ J LZOOZ‘ 3401 1 I 8 R J
18 T 42 12 48 12 12 12 12 12
/
/
/
/
/
/
{
0 A 1 0 0 0
pointer
| BEDSN T y 1720,4) 12002 ,3401 L i i J
18 42 12 48 12 12 12 12 12
0 0 B 1 0 0 0
ltnd i , 1720,4 5 L200143L011 i f 1
18 42 12 48 12 12 12 12 12

LIST ~STRUCTURE OF INPUT . FOR

BxF (A B)* (A+B)* »2 + A

Remarks: - CDC computer words are 60 bits long. Floating point
numbers are represented by 12 bits for exponent and
signs; 48 bits for mantisse (twice this convention
for double precision quantities).

- The formulae are represented in a densely packed
way .

- The use of pointers is minimal: only to connect the
additive parts.

- In the internal representation, symbols are always
tollowed by an exponent; functions cannot be followed
by an exponent.

The list structure of the Output is slightly different as it is
possible to factor ocut some quantities:

Bl12B12*B1l3% . Y AL 1AL EAL 3+, < uu)
BZ12B22%B23" oo . (A2IFA22xA23+F. vira)

Functions and vectors are always factored out by the system. For
other quantities it can be reguested by the user. As each term
is calculated a scan through the present state of the result has

to be performed and is optimal when (length of quantities outside
brackets)= (length of guantities inside brackets).

FACTORS OUTSIDE BRACKETS (no coefficient)
pointer to
next term pointer length file nr
L. [W0 I £ A i J { G £ R
30 30 12 12 12 12 12
\\ FIRST TERM INSIDE BRACKETS
\
“_:l_-?om[ij coefficient . coefficient ; Jength '
13/ 42 2 2 N 2 12
// SECOND TERM INSIDE BRACKETS
po'mtefr\ coefficient coefficient length
(18 AL T i] i
18/ 42 1?2 ” 12 7. 1
LAST TERM INSIDE BRACKETS
. end coefficient " coefficient Llingth‘ ;

LEST

STRUCTURE OF OUTPUT

9

The Output store is the array NU(5000).

d) From Input to Output

Substitutions are performed in a sequential way. Each substitution
is performed at a certain level, specified by the user. Working
out a pair of brackets is essentially a substitution and requires
an additional substitution level.

The calculation mechanism works along the following lines:

notation: L = substitution level,
expr(L) = expression under consideration at
level L.

expr(0) = INPUT expression
L =20

’l‘

take next term of expr(L)

|
if last term is processed and L =
it last term is processed and L

work out that term - apply built-in functions

0 , then stop
0, then L=z L-1 —

replace dummies by actual values

apply all substitutions of tevel L+1 on that term
store the result as expr (L+1)

if further substitutions all work is done on that term -

and evaluation are required bring it to the output store
L=L+1 and compare for addition or
% cancellation
) J e

CALCULATION MECHANISM

The administration implied in the statement "take next term of
expr(lL)"” is done by specifying pointers to the first term, and to
the current term.

example: (A1+B1)*(A2+B2)* (A3+B3)

is successively referred to by

0 0
ointer
f ANUPEEN TN ON [G Ol i 0 4 1
15 15 15

. R

A2 A3

0 0
IQ\A?L/\\A?I l’-\lL/AlL 1 J
Al A2 A3 B3
0 0

R R e T Y| R D 1

Al A2 B2 A3

setc.

These "administration words” can easily be recognised in a
Schoonschip dump, and allows the user to trace back which was
the term under consideration at the moment of the dump.

As soon as some ot the expressions involved reside on disk rather

than in memory, the situation becomes much more complicated. Such

cases are not described here.

T b

e) Use of the Input store

The input store contains (in the following order):

1. The built-in formulae (necessary for dirac algebra, epsilon
reduction, etc.)

2. The expression (+ its subexpressions) to be evaluated.
3. The right-hand sides of the substitutions.
4. The substitutions and commands.

a) control word specifying the level, the expression number
of right-hand side and a pointer to the next control word.

b) left-hand side: one guantity per word.
5. A separator symbol: 7740000000 0000000000

6. The intermediate steps of all substitutions on the last term.
i.e. expr(L) followed by its administration words for all
L-values involved.

) Overflow of the Output store

The output mechanism works as follows: The calculation generates
a term, which is compared with the terms already present in the
output store. This can lead to an addition or to a new term.

Assume the output store is full. The incoming term is compared
with the output store. If no addition occurs, the term goes to
tape 4. (No test is made whether such a term is already on the
tape). When all terms are generated, the output store is emptied
(e.g. by printing). Now tape 4 is read in, its terms go into

the output store and possible overflow is written on tape 5.

Then the function of tape 5 and tape 4 is interchanged, etc.,
until all terms are printed. (Tape 4 and tape 5 are disk files).

Looking inside Schoonschip

There are three instructions that cause a dump of the
internal (or "coded”) representations:

1. PRINT CINPUT: dumps after analysis of the input
2. PRINT COUTPUT: dumps at the end of the calculation
3., PRINT-ERROR: dumps whenever an error message is given.
Even in correct calculations it is possible to force a dump,

in order to see what was going on at a particular moment, by using
one of the following tricks:

IV.

15y P
N MU
L EXPE(A#BRE) **3
ID,A=AA

10,B=BB*P(MU)
PRINT ERROR

Whenever the index, specified on the N card, is seen in the output
as index of a vector, the "error 1001” occurs. Varying the place
where P(MU) is appended allows to specify exactly at which point of
the calculation the dump is made.

2. N 500
Z- - EXP=(AxB+C)¥* 10
PRINT ERROR

Ouring every calculation the number of "multiplications” or "insertions”
is counted. This number is given in the statistics. However, the
error "Insert count limit" is forced when

(nr of inserticns)=(nr on N card - 300).

In this example the error will occur after 200 multiplications. This
feature allows to follow the calculation step-by-step.

N.B. Remember, N 15 means floating point numbers are printed with

5 digits.

N R means floating point numbers are converted to a
gquotient of 2 integers.

Comments on a few Schoonschip Facilities

a)J Functions are essentially considered as non-commuting quantities.
(Special instructions: Allow Inbetween and Allow Disorder can
be used to make them commuting anyway).

b) The normal Spinor algebra is built-in.

c) The program always attempts numerical evaluation of an expression
before doing algebra on it. E.g. (1+2)**100 is not computed in
the same way as (A+B)**100. DX is a built-in function which
generates a call to subroutine EXTRA, to be given by the user in
Fortran.

d) The user can add his own "built-in functions” (called X expressions).

e)

f)

g)

h)

There is no branching possible in a Schoonschip program. However,
this can be easily overcome by using selective substitutions.

e.g. IFSMA, IFCRE, IFEQU tests on the coefficient of each term
and appends a symbol to each successful term. COUNT computes the
the weight, N, of each term and appends to it, e.g. F(N) or A**N
Very complicated pattern matching can then be used to pick out a
specific term:

AXEN+ZEEENEECE M S ECAS B, NE Me] =

The "freezing" of the expression

ZMYTMNA2% S S ALLEAL 2+, .)
RV ZL N 2255 i SR A2LRA22 i)

leads to

ZENPELIVA 2555 FOF(Z,)
EVNINYDON on S EBEEZ, 2

Now substitutions on Vi' can be done (which may involve DF).
DF remains unchanged. At the end DF is again replaced by the
Aij values (with the command EXPAND) .-

Output as well as input can be stored on disk and used again later.
The first feature allows to cut a long calculation into little
pieces (write common, enter common, R input, etc.) The second
feature is useful in cases where a kind of "D0O LOOP" is required
(which is not available in Schoonschip). (Tape copy, tape read,
etc.)

It is up to the user to specify whether expressions have to be
kept or deleted after a part of the calculation. If required,
a transfer from output store to input store is made. When the
expression is too long for the input store, it is automatically
stored on disk (keep, delete, *begin, *next, etc.).

APPENDIX 1

SCHOONSCHIP , VERSION 0OF JANUARY 1, 1975
TIME .40 SECONDS
6 EXAMPLE ., EXPANSION IN POWER SERIES UP YO TENYH ORDER IN Y
FUNCTION FS,FC
C SERIFS TO Bt EXPANDED,
L EXPANSES((3xY*A2))R (FS((UnY/3)))*xnx2hkFC((2*Y))/Yrrd4 % A x B
C THIS EXPRESSION IS NOW EXAMINED FOR SUBSTITUTIONS,
C FIRSYT SUBSTITUTION, 2+ MEANS, REPLACE FOR ANY VALUE OF Z .
=3 ID,FS(Z+)2l=2n%x3/6+2%25/120=2%%x7/5040424x%9/362880=2a%x11/39916800
C WHEREVFR IN ExPAN THE FACTOR FS IS SEEN, FS IS REPLACED BY THE
C RIGHT HAND SIDE OF THE SUBSTITUTION,
C SECUND SUBSTITUTION,
L 4 ID,FC(Z4)s 1 =7%n2 /230 %%l /2U=2nho/TR20+24%xB/U(0320"2%x%x10/3628800
C WHFREVER IN EXPAN THE FACTOR FC IS SEEN, FC IS REPLACED BY THE
C RIGHT HAND SIDF OF THE SUBSTITUTION,
C AFTER THFSE SUBSTITUTIONS, ALL TERMS OF EXPAN HAVE THE FORM
C AXBAY *rN wITH N UP 10 Sv,
C Wk WANT TO TRUNCATE THE SERIES AT Yxx10 ,
L 5 ID,AzYrx(=10)
C DIVIDE EXPAN BY v=&axi(
L 6 10,Y=0
C TERMS yYxaN wITH N POSITIVE ARE SET TO ZEROQ,.
IS £ ID,B=Yiax10
(55 MULTIPLY EXPAN wlITH YAx10
x END
SYMBOLS 1=, Yy A, B,
FUNCTIONS D, EPt=1, GsI, GI, 6S=I, Gé=C, G7, uG=sC, uBG, DL=y, DB,
DT, DS=EUZ-DX, DKy DP, DESU, FS, EC,
RUNNING TIME (SEC) 18483 USED MAXIMUM
TERMS IN QUTPUTY 6
GENERATED TERMS BO INPUT SPACE 352 2000
EQUAL TERMS T4 QUTPUT SPACE 2t 4890
CANCELLATIONS 0 NR, OF EXPR, 67 260
RECORDS WRITTEN 0 I1D0s REGISTER 11 500
MULTIPLICATIONS 41773 FUNCT, REG, 12 750

EXPAN =

+ 5:333313 -

END OF RUN, TIME

1,38272E1aYxx2 ¢ 2,6257%xYax4 +

1,65662E1aYa%6 = | ,15265E1aYx%B = 3,23859xyYAn10

19,28 SECONDS

+0

