
Schoonschip

a program for
symbol handling

Martinus J. G. Veltman
edited by

David N. Williams

January, 1991

Copyright c© 1988, 1989, 1990, 1991 by Martinus J. G. Veltman.

All rights reserved. This manual may be freely copied with no changes
in content, including this copyright notice, for noncommercial personal
or educational use. Copies for other purposes may not be made without
the permission of M. J. G. Veltman or D. N. Williams.

First version: January, 1964
Current version: January, 1991
Last corrected: November 29, 2001

Contents

Changes from Earlier Versions vii

I. Introduction 1

II. Basics 3

III. Input Facilities 7

1. Blocks . 7

2. Do-Loops . 8

3. Read Statement . 10

IV. Type Definition 11

1. Names . 11

2. Basic Algebraic Rules . 12

3. Exponents . 14

4. Reality Properties . 14

5. Truncation . 15

6. Vector and Tensor Algebra 16

7. Functions . 18

8. Built-in Functions . 20

V. X, D and T Expressions 25

1. X Expressions, Cosine Example 25

2. D Expressions, Determinant Example 26

3. Dummy Correspondence 27

4. Determinant Example Continued 27

iii

iv Contents

5. Tables . 29

VI. Z Files 31

1. Local and Common Files 31

2. Common File IO . 33

3. IO Example . 34

4. Large Files . 35

VII. Print Options 37

VIII. Section Termination 39

IX. Substitutions 41

1. Substituting for Patterns 41

2. Levels, Partial Integration Example 43

3. Conditional Substitutions 44

4. Survey of Patterns . 45

a. Algebraic Symbols . 45

b. Single Functions . 46

c. Vectors . 47

d. Generalities . 48

X. Patterns 51

1. Classes . 51

2. Examples . 54

XI. Conditional Substitutions 57

XII. Substitution Commands 61

1. List of Commands . 62

2. Internal Ordering . 63

3. Description of Commands 63

XIII. Conditional Input 85

Contents v

XIV. Internal Procedures 89

1. Levels . 89

2. Problem Size . 91

XV. Particle Physics 95

XVI. Character Summation 99

1. Vertices and Propagators 99

2. W Boson Self-Energy Diagram 100

3. Character Tables . 103

4. Character Summation Function DS 104

5. Character Function DC . 105

XVII. Gamma Algebra 107

1. Other Dimensions . 107

2. New Notation . 108

3. Review of Gamma Operations 109

a. Collection . 109

b. Preliminary Reduction 110

c. Sum-Splitting . 111

d. Unification . 112

e. Index Pair Elimination 112

f. Vector Pair Elimination 112

g. Traces and Final Reduction 113

h. Summary of Operations 113

4. Gammas Command . 113

5. Vector Extraction . 115

a. All and Iall Commands 115

b. All with Ndotpr Command 117

6. Examples . 119

XVIII. Statements 123

vi Contents

XIX. Handling Large Problems 129

1. Disk Utilization . 129

2. Other Factors . 131

3. Tuning Facilities . 132

4. Freeze Statement . 132

XX. File Handling Statements 135

XXI. R Input 139

XXII. Summary 141

1. Comments . 141

2. Program Sections . 141

3. Blocks and Do-Loops . 142

4. Declarations . 142

5. Statements . 143

6. Substitutions . 146

7. Conditional Substitutions 151

8. Built-In Functions . 151

9. Conditional Input . 153

A. Command Line Options 155

B. Compatibility 159

Index 161

Changes from Earlier Versions

This version of Schoonschip (January 1, 1991) differs considerably from ver-
sions prior to January, 1989. Every effort has been made to avoid changing
code that has been shown to work correctly, and to maintain upward com-
patibility as far as possible. To be able to run known problems and compare
the results is invaluable. The present version builds on twenty-seven years of
experience.

Modern users tackle ever larger problems, and the improvement of Schoon-
schip’s handling of large problems was a high priority. There were several con-
siderations, including first of all new ways to present and formulate problems.
That led to the introduction of a new concept, that of character summation, character

summationwhich makes possible the very efficient generation of diagrams. As yet the
main applications seem to be in high energy physics, but the concept appears
to have greater generality. More specific to high energy physics is gamma
matrix algebra. Efficient methods for dealing with gamma matrices in other gamma matrices
than four dimensions have been incorporated. That allows the application of
dimensional regularization to problems with fermions.

Another important tool for handling large problems is the Freeze com- Freeze

mand. It existed in cdc versions of Schoonschip, and has now been imple-
mented in this version.

Last but not least, the output sorting methods of Schoonschip have been output sorting
vastly improved. Previous versions tended to generate very large disk files, and
consequently were quite time consuming. That seriously limited the magnitude
of the problems that could be treated, especially on relatively small systems
(pc’s). It is to be emphasized that there is no reason in principle why Schoon-
schip should not run just as well on pc’s as on mainframes. Of course the cpu
speeds are different, but that is often more than compensated by the fact that
mainframes usually deal with a multitude of users. And disk file handling
is not necessarily slower on a pc. The main difference is that mainframes
have essentially infinite disk space, but that advantage is rapidly disappearing
as larger and larger disk systems become available to pc users. Right now

vii

viii Changes from Earlier Versions

the standard is about 40 megabytes, but there are already very good and
inexpensive systems with capacities in the 100-200 megabyte range.

The new sorting methods give an improvement of one or two orders of
magnitude in time and disk space for large problems (those producing disk
files of more than 1 megabyte). Of course, “reasonable” default parameters
are built in; but for truly large problems the Schoonschip parameters must be
tailored to the problem. It is suggested that Chapter XIX, Handling Large
Problems, be read at least once, just to get a feel for the situation; if the need
arises one can go back for more details.

Several new statements and commands have been implemented. Some of
them replace older, more cumbersome forms. All statements are summarized
in Chapter XVIII, Statements, except for conditional statements and certain
passive, type defining statements which have been categorized as “declara-
tions.” Substitution commands are discussed in Chapter XII, Substitution
Commands.

New statements:

Anti Fortran Progress

Beep Freeze Rationalize

Digits Large Round

Directory Maximum Showl

Dostop Nshow Silence

Dryrun Overflow Synonym

External Precision Traditional

New conditional input statements:

Goto Gotoifn

Gotoif Set

New commands:

Absol Gammas (old Trick,Trace)
Anti Iall

All Ndotpr

Beep Order

Dostop Print

Expand Stats

Extern

Slight modifications:

• Integ on cdc versions of Schoonschip truncated numbers. Later versions
rounded to the nearest integer. Truncation has been reinstated as the

Changes from Earlier Versions ix

default, but the statement Round on may be used to obtain rounding to
the nearest integer.

• B lists may now include vector names. All dot products or vector com-
ponents relating to a vector in the list are factored out. There is a new,
Exclusive option for B lists. If the first argument in the B list is the Excl

keyword Excl, then the names that follow will be the only quantities fac-
tored out; and in that case function names may also appear in the B list.
The Exclusive option is especially helpful with the Freeze command.
See Chapter IV, Types, and Chapter XIX, Handling Large Problems, for
more details.

• A D function with or without dummy arguments may now appear on
the left-hand side of a substitution, although not combined with other
factors.

• The Count command has been slightly enhanced, allowing multiple counts
with one command.

• The Symme and Asymm commands have been slightly enhanced, allowing
the handling of groups of arguments.

• The Spin command now allows vectors as arguments to identify spinors.

• The substitution types

Id,Funct,a= . . .
Id,Funct,p(mu~)= . . .

may now have function names between the keyword and the last argu- function names in
substitutionsment. Then only those functions are affected. Example:

Id,Funct,Epf,p(mu~) = k(mu) + q(mu)

New notation: Long names containing special symbols such as +, -, blanks, long names
etc., may now be used for algebraic symbols. They must be enclosed in square
brackets. Example: [a+2/3*b] is recognized as a symbol with that name. square brackets

Entirely rewritten: Chapter on Conditional Substitutions, (Chapter XI).

New chapters:

Conditional Input
Character Summation
Gamma Algebra
Statements
Handling Large Problems
File Handling Statements
R Input

x Changes from Earlier Versions

It is suggested that one read (or try to read) the new chapters at least once,
to get an idea of what is available.

Schoonschip has not had the reputation of being “user friendly,” whatever
that may mean. Error reporting, as well as syntax, has been a concern. A
few changes have been made in error reporting; but while its importance was
well recognized, it was not given the highest priority. On the other hand, a
number of improvements in syntax have been made.

There are a few minor incompatibilities with older versions. Square brack-square brackets
ets [] now have a new function, and cannot be used any more as regular
brackets. The statements DELETE (for deleting blocks) and Printer (to re-DELETE

quest line printer type output, that is, longer line length) have been replacedPrinter

by Bdelete and Lprinter. That was necessary because there is no longer anyBdelete

distinction made between upper and lower case symbols for commands andLprinter

statements. (Case sensitivity for symbol names, including those of built-in
functions, and for block and do-loop names, has been retained.) There hascase sensitivity
also been an attempt to make the commands recognizable by the first few
(four at most) characters.

The condition code system has been thoroughly reviewed. Although quiteconditionals
powerful, it was cumbersome. Instead, there is now a system employing famil-
iar logical constructs: IF, AND, OR, NOT, ELSE and ENDIF.

The handling of exponents has been modified. Before, the addition ofexponents
exponents was circular, going through 128 to −128. That is no longer true.
Now there is an overflow error message, that can, however, be switched offOverflow

(Overflow off statement).

Finally, there is a new, alternative notation for gamma matrices.

Acknowlegements: Thanks are due to Drs. E. Remiddi and J. Vermaseren
for inspiring several of the improvements incorporated in this (and older!) ver-
sions of Schoonschip, and to S. Titard for helpful comments on the manuscript.

Chapter I

Introduction

Schoonschip is a program written in assembly language intended especially
for handling large algebraic expressions. Very little is built in in the way of
function properties, integral tables, etc.; but there are many facilities for oper-
ating on expressions. For example, if the user knows what kinds of integrands
are going to occur it is easy to write procedures to do the actual integrations.
Schoonschip never tries to think for the user, it just makes it possible to use
the computer as a tool for doing algebra.

There are provisions for building up libraries of Schoonschip statements.
Blocks of statements that perform well-defined operations (such as differenti-
ation or integration) may be defined, stored, and recalled when needed with
a single line. In this way the user can build an environment to suit his own
needs.

The way the system works is basically like this. One gives Schoonschip
an expression, followed by instructions that operate on it. Schoonschip first
works out the expression term by term, and then each term passes through
a series of levels. At each level the user has an opportunity to work on the
term. The results are collected in an output storage area and like terms are
added. The result at that point can be handled in a variety of ways: it can be
returned to the input for a new round; it can be written to disk for later use,
etc. Normally the result is also printed.

This manual explains the available features by means of examples. It is
helpful to have some knowledge of how Schoonschip works, and details about
that will be given at various points. The manual is meant to be read having at
hand the file of examples, supposedly named Examples.e. To see, then, how examples file
Example 5 works, one types

Schip +5 Examples.e

1

2 I. Introduction

If the output fills more than one screen, the user will probably want to
specify a text output file, either by the >filename output redirection optionoutput to a text file
available in many systems, or by simply giving the output file name as the last
argument:

Schip +5 Examples.e outp

The file outp can then be inspected later. Alternative ways to specify input
and ouput are described in Appendix A, Command Line Options.

The input text of the examples is reproduced in this manual, but the output
text generally is not.

This manual is intended to serve not only tutorial but reference functions
as well. The reference functions are embodied in the Index, with index items
echoed in the margins to make them easier to locate on the pages where they
occur, in Chapter XXII, Summary, which is a “reference card” for Schoonschip,
in Chapter XII and Chapter XVIII, Substitution Commands and Statements,
which provide complete alphabetical listings of commands and statements with
brief summaries of their actions, in the Table of Contents, and in the attempt
to lay out the text for visibility. Note that Chapter XXII, Summary, Appendix
A and Appendix B are intended for direct reference, and there are no references
to them in the Index.

Chapter II

Basics

The first example shows what is meant by working out an initial expression.
The expression must be given on a line with a Z in the first column, followed Z expression
by a blank or tab in column 2. The general convention is that a line with a
blank or tab in column 1 is a continuation of the previous line. continuation

Here is the start of the first example:

C Example 1.

Z XX = (a + b)^2

Note the C in column 1 of the first line. That denotes a comment line, which C line
Schoonschip ignores except for printout. The notation ^ in the second line
means exponentiation; **, as in Fortran, may also be used. XX is an invented exponentiation
name that identifies the expression in case it is to be reused, written to disk,
etc. It may be part of another expression in later problems. All that Schoon-
schip does at this point is to work out the right-hand side to a series of terms:
a^2, a*b, b*a and b^2. If no further operation is done on the expression, that
is what will go to the output. For algebraic variables (which a and b are taken
to be by default) commutation is assumed; thus a*b is recognized to be the
same as b*a. Schoonschip handles that by rearranging every term, putting the
symbols into an internally well-defined order. For quantities of the same kind, ordering of variables
that is generally the same as the order in which they first appear in the input.

In the present case no further instructions are to be given, and the program
may proceed to do its work. The signal for that is a line with a * in column 1. * line
The remainder of the * line instructs Schoonschip what to do next, after this
task has been performed. Right now the idea is to go on to another example,
and we use the word begin to make Schoonschip start over. After the *begin *begin

line, a, b and XX are lost.

3

4 II. Basics

*begin

For massive expressions, it is often desirable to group terms in the output.grouping terms
They may be grouped, for instance, with respect to the variable a and the
exponents with which it occurs. The way to do that is to give a list of quantities
to be factored out, on a line with B as its first character. At most 130 quantitiesB line
are allowed on B lines.

B a

Z XX= (a + b)^2

*end

There is an option to designate a B list as Exclusive, which means that onlyExclusive

symbols in the list will be factored out. The syntax is, for example,

B Excl,a,b

which ensures that only a and b will be factored out. See Chapter IV, Type
Definition, and the discussion of the Freeze statement in Chapter XIX, Han-
dling Large Problems, for more details.

About the only other controls the user has over the output format are
facilities that affect how numbers are printed. By default Schoonschip tries
to write every number as a rational fraction, but that is not always possible.
Internally all numbers are represented as floating point numbers, with a 14-bitinternal numbers
exponent and a 96-bit fraction. When printing, Schoonschip tries to convert
to a rational, using 70 bits as input. The rational is then reconverted to a
floating point number, and agreement to 84 bits is required. If that works,
the number is printed as a rational; otherwise it is printed as an integer or
floating point number, depending on the number. The user has control over
the number of decimal digits to be printed for floating point numbers. The
rationalization procedure can also be modified. That is done by means of one
or more of three statements:

Precision #

Rationalization #

Digits #

As often with Schoonschip syntax, only the first three (or if no confusion
is possible, two) characters of these statements are significant, and they may
be in upper or lower case. Thuscase sensitivity

PRE #

is acceptable instead of Precision #. The # character in this manual rep-
resents literal integer numbers (symbols or expressions not included), which#

II. Basics 5

are usually written as decimal digits, but may also be written in hexadecimal.
Schoonschip’s hexadecimal notation is described later in this chapter.

If # is absent in the above statements, the defaults are used. The num- Digits

ber following Digits specifies the number of digits to be printed for floating
point numbers. The default is 5. The number following Rationalization Rationalization

specifies how many decimal digits should be used (number of numerator plus
denominator digits) when attempting rationalization. The default is 22. If 0
is specified, no attempt at rationalization is made. For other than the default
value, no check on the remaining digits is done. That can be used to find
rational approximations for numbers.

Numbers are always a problem in symbol handling programs, and the ap-
proach chosen in Schoonschip has grown out of many years of trying various
possibilities. As already noted above, every number is put into a floating point
format with a fraction of about 29 decimal digits (96 bits) and a 14-bit expo-
nent. In the course of the calculation one will lose precision, and stray bits
will accumulate in the least significant part of the number. Cancellations will
thus not generally be exact. Schoonschip assumes that two quantities cancel
if 25 decimal digits (80 bits) of the coefficients cancel. That number can be
changed by means of the Precision statement, where # is the desired number Precision

of decimal digits. To be precise: 1.E15 + 1 - 1.E15 is 0 if # is 15, and is 1
if it is 16.

The above should make it clear to what extent numbers are treated exactly.
In general, rationals will be converted properly if the sum of the number of
decimal digits in the numerator and denominator is less than 21.

Numbers may be written in various ways: numbers

• without exponent or fraction: 1230, 17893
• with fraction: 1.978, 33.127
• with (signed) exponent: 12E13, 178E-17
• with (signed) exponent and fraction: 23.47E15, 18.49E-200
• in hexadecimal notation: 0x10ABC, 0xA4FFF

The last two are the same as 68284 and 675839. The hexadecimal notation is
actually needed in certain statements (the Directory statement). Directory

Schoonschip will work out multiplications and divisions of numbers di-
rectly; thus 2/3 is immediately converted to 0.6666666. . .

The effects of the above statements as well as some other features are shown
in the following example. An expression is given, printed, and redirected to the
input; and then some new instructions are given. Normally, when rerouting
an expression to the input, no output is printed; and one must explicitly ask
for printout by including a line with a P in column 1. Schoonschip echoes such P line

6 II. Basics

a line to the output, prefixed with an additional > sign. The instruction that
redirects the output is the word yep on the * line. Another way to include*yep

comments is also illustrated. A ! simply means that the rest of the line is! comments
to be ignored. It should also be noted that blanks and tabs are generally
ignored, except for their role as line continuation characters when they occur
in column 1.

C Example 2.

P output !Only the first two characters of ’output’

!are significant.

Digits 3

Rationalization 3 ! 0 leads to no rationalization

! attempt.

Z XX=3.14 + 1/3*a1 + 7.1357689E20*a2 !E20 or E+20

!implies 10^20.

*yep

Digits !This restores the default

!option, 5 digits.

Rationalization !Default: 22 digits, with check.

*end

The end on the *end line signals termination after the problem has been
worked out. As with most Schoonschip input, * lines are format free, except*end

that the * must be in column 1. But one may write, for example, * en d.

Chapter III

Input Facilities

Schoonschip offers great flexibility in input. Two basic features are available:
blocks and do-loops. A block is a set of lines that may recur with minor
variations and that can be called with a single line. The structure is much like
that of macros in assemblers. Do-loops are similar to Fortran do-loops.

1. Blocks

A block is delimited by two lines. The first line contains the word BLOCK in BLOCK

columns 1-5, followed by a name, followed by arguments separated by commas
and enclosed in curly brackets. The last line must contain the word ENDBLOCK

in columns 1-8. When the block is called, arguments that are enclosed between ENDBLOCK

single quotation marks in the block definition (the double quote mark may
not be used for this purpose) are substituted for. A block name may have 1-6 block name
characters.

C Example 3.

BLOCK text{xx,yy}

C This argument is substituted in a call: ’xx’.

This is not: xx.

Arguments can be glued together: ’xx’’yy’.

ENDBLOCK

To call a block, simply give the name with the arguments to be substituted.
Be sure to start in column 1, and to enclose arguments in curly brackets. An
example of a call:

text{yes,sir}

7

8 III. Input Facilities

Blocks are stored on disk in a file called tape9, and are recalled as needed.tape9

Schoonschip keeps a list of the names in memory.

A block is remembered over *begin lines. It can be deleted by giving the
word BDELETE starting in column 1 (four characters are significant, three if noBDELETE

confusion is possible, with lower case also accepted), followed by the name of
the block to be deleted.

BDELETE text

There is a simple way to delete entire lines when calling a block. A line
with the character ~ in column 1 is totally ignored by Schoonschip, not even~ line
printed. Suppose we want lines 1 and 2 of a block in one case, and line 3 in
another case. Example:

BLOCK lines{A,B}

’A’C line 1

’A’ line 2

’B’ line 3

ENDBLOCK

Now call the block and use ~ to delete lines:

lines{,~}

lines{~,}

Note that an empty argument leads to an empty substitution. Actually, if the
final arguments are empty it is not even necessary to type commas. Thus,
lines{~} gives the same result as the last example.

It may happen that one wants to call a block with an argument containingcommas in block
arguments a comma. To do that, enclose the argument in curly brackets { }. When

substituting, Schoonschip peels away the outer layer of curly brackets. For
example, text{{a, b}, and c} leads to:

C This argument is substituted in a call: a, b.

This is not: xx.

Arguments can be glued together: a, b and c.

2. Do-Loops

Do-loops are also delimited by two lines. The first line must have DO inDO

columns 1-2 followed by name=#1,#2,#3. The word name may have (as isdo-loop name
generally the case with names in Schoonschip) up to six characters. The three
numbers represent a range of numbers to be substituted for name in the rest

2. Do-Loops 9

of the do-loop. The first two specify the range, the last, the increment. The
do-loop is terminated by a line containing the word ENDDO in columns 1-5. ENDDO

As in the case of blocks, substitution is done if name occurs enclosed between
single quotation marks:

DO var=1,7,2

P input !Normally only the first DO round is printed.

C value of var: ’var’

ENDDO

The numbers may also take negative values. Schoonschip handles that by
attaching the prefix % to the number, which is interpreted as an intrinsic minus % prefix for minus
sign when encountered in front of a number. If it occurs elsewhere, the % sign
is part of whatever it occurs with.

DO var=-1,1 !The third number is 1 by default.

P input

C value of var: ’var’.

C This may be part of a name, for example XX’var’, or an

index, for example YY(3+’var’). In the latter case

Schoonschip will interpret the % sign as minus and

correctly work out the number.

ENDDO

Premature exit from a do-loop may be forced at execution time by means of forced exit
the substitution command Dostop (see Chapter IX, Substitutions, and Chap- Dostop command
ter XII, Substitution Commands). This is a somewhat tricky affair, due to the
fact that do-loop expansion occurs strictly at the input level, while the Dostop
command functions during execution, i.e., after the input has been read up to
a line with a * in column 1. A Dostop command takes effect only after such
a line. Forced exits should therefore normally be used only for do-loops that
have * lines as their last statements.

There is also a Dostop statement, which acts just before execution. It Dostop statement
serves to preset the Dostop flag, and at execution time, a forced do-loop exit
may thus be either nullified or set. Again, a * line should be the last before
the ENDDO. The syntax of this statement is:

Dostop on

or

Dostop off

This sets or clears the do-loop forced exit flag. Normally, a do-loop with
a Dostop substitution command should also have a Dostop statement. The

10 III. Input Facilities

statement should occur preferably just before the first command of the set in
which the Dostop command occurs.

Blocks and do-loops may be nested, up to 10 levels deep. As indicatednesting
above, this is all done strictly on the input level; only pure character substitu-
tion (apart from the % sign) is involved. It is up to the user to make sure that
sensible Schoonschip input results. Use the statements P input and P ninputP input

to see or to suppress the text that is actually generated.P ninput

3. Read Statement

Since the same blocks may occur in many different problems, it is useful to
have the blocks stored in a file, and to let Schoonschip read them in before
starting a problem. That can be done, and is in fact not restricted to blocks.
A line with the word Read in columns 1-4, followed by a file name, causesRead

Schoonschip to open the file and read it as normal input. When a line with
the word End in columns 1-3 is encountered in the Read file, SchoonschipEnd

returns to the original input file. The input stream can be switched in this
way any number of times. All blocks read in are stored in tape9, and can betape9

used in all subsequent problems.

Restriction: A Read within a Read file is not allowed.

Chapter IV

Type Definition

Several different types of symbols may occur in algebraic expressions in
Schoonschip, and the user must generally declare the symbols and their types symbol types
beforehand. The following types may occur:

• algebraic symbols
• indices
• vectors
• functions
• expressions

These are defined on lines having A, I, V, F or X in column 1.Actually there
are additional types of expressions, characterized by D or T in column 1, but
we will discuss those later.

1. Names

Names may have up to six characters, with both upper and lower case letters symbol names
and numerals allowed, as long as the name is distinguishable from a number.
Upper and lower case are distinguished. The underscore character (_) may underscore
also be used in names; and if it is not the first character, it is not included
in the count. The underscore has a special function in certain contexts, to be
explained later.

There is a limited facility for handling long names. Long names containing long names
characters other than those just mentioned can be very helpful for mnemonic
purposes. Such names must be enclosed in square brackets. They can contain square brackets
just about any character except control characters (such as a tab or a linefeed),
or square brackets themselves. Their use is restricted to algebraic symbols.

11

12 IV. Type Definition

Examples:

Abcd abc_def 12A3 12_ab f1 f2 [a + b/3]

Illegal names:

Abcdefg 12E3

The last name would actually be understood as a number: 12 * 10^3.

2. Basic Algebraic Rules

The most common symbols are simple commuting variables that may have anexponents
exponent. The exponents must be short integers, that is, integers in the rangeshort integers
−128 to +127 inclusive. The extreme values are taken in case of overflow,
if error trapping has been suppressed with the Overflow statement, to beOverflow

explained below.

Indices may also be used as algebraic variables, but they are really meantindices
to be used as vector indices, or function arguments.

Functions are treated as noncommuting quantities, whether or not theyfunctions
have arguments. If they are supposed to commute, that can of course be ar-
ranged; but if they represent matrices (with or without indices as arguments),
then they ought to be treated as noncommuting. In short, functions may
be used to represent anything that is not one of the other types. Whatever
calculational rules they obey must be given by the user.

Vectors are treated according to the standard rules of vector algebra. Invectors
particular, dot products may be formed, denoted by a capital D between twodot products
vector names. Thus, if p and q are vectors, then pDq denotes the dot product
of p and q. Schoonschip follows the usual summation convention that repeatedsummation

convention indices are summed: p(i1)*p(i1) is interpreted as pDq. The Kronecker delta
is also available; it is the special function D, which is built in. Here is anKronecker delta
example showing various rules:

C Example 4.

A a1,a2,a3 !Algebraic symbol list.

F f1,f2,f3 !Functions.

I mu,nu !Indices.

V p,q,k !Vectors.

Z XX = p(mu)*{ a3^-20*a1*q(mu) + a2*a1^7*D(mu,nu)*k(nu)

+ a3*f2(mu,k,q)*f1} !Note the use of {}.

2. Basic Algebraic Rules 13

+ q(mu)*{a3*a2*a1 + f3*f2*f1}

*end

Note that functions are always treated as if they are on the B list, to be factored factorization,
orderingout. (Unless Exclusive is mentioned at the head of the B list, in which case

Exclusivefunctions can be explicitly included in the list, and only those included are
factored out.) Vectors not part of a dot product are also factorized. Note
also the rearrangement of the symbols a1, a2 and a3, which is not done for
functions such as f1, f2 and f3 (caution: except when the Excl option is used).
Furthermore, Schoonschip pays no attention to the fact that f2 occurs both
with and without arguments. As shown, curly brackets may be used instead curly brackets
of the usual brackets, but they must be paired. The user must also make
sure that they cannot be confused with block definitions and calls. Special
characters like *, +, etc. occurring in front of the { cause no problem in that
respect.

Functions and vectors may not have exponents. For functions that is a no exponent rule
mild restriction, because one can always add an argument, and consider that
to be the exponent.

Vectors may have numerical arguments, for example, p(3). This is taken vector arguments
to mean the third component of p, but only in a rather formal sense; and
Schoonschip has no objection against, for example, p(-3). The only restriction
is that the number must be a short-short number, that is, less then 32. These short-short numbers
numbers are treated modulo 32, ranging from 0 to 31. Thus p(-3) becomes
p(29). In the following, a quantity like p(3) will be called a vector component.
If an index occurs all by itself, not as the argument of a vector or function, it is
treated as an algebraic symbol. Thus one could have mu^3. Vector components
and dot products may also have exponents.

Like Fortran, Schoonschip has default assignments for names not men- default types
tioned in any list. The assignments may seem pretty obvious in a case like
ff(a1,a2), but a case like p(k) is ambiguous. Is p a function or a vector?
Again, as in Fortran, the default assignment for xx in a case like f(a1,xx) is
to make it an index if the first character of xx is in the range I–N or i–n, and
otherwise to make it an algebraic symbol. It is always possible to see what
Schoonschip assumes by using the P list statement, which causes a printout P list

of all the lists of all quantities in a given problem. There will be more about
this statement later.

14 IV. Type Definition

3. Exponents

The rules for algebraic symbols are the usual ones. They are supposed toalgebraic symbols
commute with themselves and everything else, including functions. They may
appear with or without an exponent (which must be a short number), and
may be preceeded by a /, which simply means a sign reversal of the exponent.
Thus a/b^3 = a*b^-3. The exponent may also be an expression in brackets,exponents
provided the expression evaluates to a number when the problem is worked
out. That number is then truncated and rounded to the nearest integer, whichessentially

numerical
expression

must be a short integer. Such an expression is called an essentially numerical
expression. Thus b^(2-2/3) becomes b^1 = b.

Overflow occurs if the exponent of an algebraic expression exceeds 127 or
is less than −128, in which case Schoonschip generates an error message. That
can be suppressed with the Overflow statement:Overflow

Overflow off

Then an overflow (or underflow) causes Schoonschip to set the exponent to
127 (or −128), representing infinity. Error trapping can be turned on again
with the statement:

Overflow on

The Overflow statement may be given in the *fix section (to be explained*fix

later), in which case the option given with it becomes the default.

The rules for dot products, vector components and indices not appearingvectors
in a vector or function argument are precisely those of algebraic symbols.

4. Reality Properties

The type lists are also used to assign further properties to the various objects.
If complex conjugation occurs in a problem, reality properties have to becomplex conjugation
defined. An algebraic symbol may be real (the default), imaginary or complex.
If it is complex, then its complex conjugate must be designated. That is done
in the A list.If a symbol in the A list is followed by =i,it is taken to be imaginary;=i

and the conjugate of the symbol is minus the symbol. A symbol may also be
explicitly designated as real by the assignment =r. If the symbol is followed=r

by =c, it is assumed to be complex; and Schoonschip creates a new name by=c

appending C to the old name, and places that name next in its internal A list.A list
For example,

A a1,a2=i,a3=c

5. Truncation 15

means that a1 is real, a2 is imaginary and a3 is complex. Schoonschip has
a built-in complex conjugation operator, Conjg, which in this case yields Conjg

Conjg(a2) = -a2, Conjg(a3) = a3C and Conjg(a3C) = a3. If desired, the
symbol a3C created by Schoonschip can be renamed with the declaration

Oldnew a3C=xxx

where xxx stands for the new name. Then Conjg(a3) = xxx and Conjg(xxx) Oldnew

= a3. The Oldnew declaration can actually be used to change any existing
name, including the built-in names.

Indices, vector components and dot products are taken to be real. Func-
tions may also be real, imaginary or complex, and in addition undefined, which undefined
will be explained below.

Except for =c, the definitions can be overridden; and the most recent def- overriding reality
inition holds. That is useful for changing the reality properties of built-in
quantities. Overriding with =c has the effect that the next symbol in the list
is considered to be the conjugate, which may be fine if it was not already
defined to be something else. On the other hand, redefining an =c assignment
leaves its conjugate symbol as real, so the conjugate symbol must be redefined
explicitly if it is not to be real.

5. Truncation

Algebraic symbols may also have truncation numbers assigned to them. The
numbers must be between −32 and +32, and their function is to facilitate
working with power series. If one assigns the number 4 to a symbol, for
example, it is assumed that powers 4 or higher of the symbol can be ignored; power truncation
and if a term containing the symbol to such a power arises it is immediately
set to zero. Such a facility is very important for dealing with large expressions.
In particular, it is extremely useful, if not indispensable, for substituting series
into series.

Warning: Truncation numbers must not be assigned to symbols in certain
situations where both negative and positive powers appear. For example, if
2 is assigned to a, then a^3 may be deleted before it gets multiplied by, say,
a^-2, giving an erroneous result.

In a somewhat similar way one may assign z to a vector. If the vector then =z

occurs in a dot product, with an index, or as a vector component, it also is
immediately set to zero. Function arguments are ignored in this process. That vector truncation
is ambiguous in a case such as p(mu)*f1(. . . ,mu,. . .) = f1(. . . ,p,. . .); such

16 IV. Type Definition

ambiguities must be resolved by the user, but do not seem to cause much of a
problem in practise.

C Example 5.

A a1,a2=i,a3v=c,a4v=c,a5=i=3

V p,q=z,k

Z XX = Conjg(a1 + a2 + a3 + a4 + a5)

Z YY = Conjg(a3C + a4C)

Z ZZ = (a1 + a5)^5

Z AA = p(mu)*{p(mu) + q(mu)} + D(mu,3)*{p(mu) + q(mu)}

+ pDk

Oldnew a4C=b4,k=K

*end

Note how a5^3 and higher powers have been eliminated. Note also that the
vector k is replaced by K. The notation D(mu,3) is explained below.

6. Vector and Tensor Algebra

The vector algebra rules are:vector algebra

D function p(mu)*q(mu) = pDq

p(mu)*D(mu,nu) = p(nu)

D(mu,nu)*D(nu,la) = D(mu,la)

D(mu,mu) = n

In the above, mu, nu and la are indices supposedly defined in an I list. TheI list
quantity n is the range or dimension of the indices, and may be a number, butindex range
can also be symbolic. Thus in three-dimensional space, n would be 3; in four
dimensions it would be 4. The default value is 4 (since 1905). The value can
be specified in the I list. One writes the number after the index:

I mu=3,nu=3,la=3

Numerical dimensions are treated as integers modulo 128, with values from 0numerical
dimension through 127, except that 0 is ignored in favor of the default dimension of 4. It

should be noted that even if a range is assigned to a quantity in the I list, it
can take on values outside that range in expressions where it is treated as an
algebraic symbol.

Obviously one is not supposed to mix indices with different ranges in a
D function. Schoonschip makes no check for that. If Schoonschip encounters

6. Vector and Tensor Algebra 17

D(mu,mu), the number from the I list is substituted. A symbol may be used in
the I list instead, but it must be only one character in length. When Schoon- symbolic index

rangeschip encounters such a symbol in an I list, it immediately enters it into the
algebraic symbol list, along with the same character followed by an underscore.
For example, underscore

I mu=N,nu=N,la=N

If Schoonschip now encounters, say, D(mu,mu)*D(la,la), the result is N^2.
The names N and N_ are both entered into the symbol table. The name N_ is
used extensively in gamma algebra with indices of symbolic range N.

As an extension of these well-known rules, there is the additional convention index conventions
that numbers and vectors may occur wherever indices may occur. Thus,

p(q), D(p,q), D(p,3), D(3,4)

are perfectly legal, and are worked out as one might guess:

p(q) = pDq, D(p,q) = pDq, D(p,3) = p(3)

Finally, if n1 and n2 are numbers, then D(n1,n2) = 1 if n1 = n2, and = 0 if
n1 6= n2.

These conventions imply a rule for D, namely that

D(-x,y) = -D(x,y)

This applies when x is a vector or an index, but not when it is a number. The
same rule applies to the second argument y.

If an index occurs as an argument of a function, the treatment is conven-
tional:

D(mu,nu)*f(. . . ,nu,. . .) = f(. . . ,mu,. . .)

where now mu may be an index, vector or number, with the logical extension:

p(mu)*f(. . . ,mu,. . .) = f(. . . ,p,. . .)

This seems fairly simple, but there is a complication that is really quite a index ambiguity
problem. Consider the following expression:

D(mu,nu)*f1(. . . ,mu,. . .)*f2(. . . ,nu,. . .)

There are two possible answers, namely,

f1(. . . ,mu,. . .)*f2(. . . ,mu,. . .)

and

f1(. . . ,nu,. . .)*f2(. . . ,nu,. . .)

18 IV. Type Definition

The answer is clearly not well defined. The two should in fact be identified.
If two such terms arrive at the output, Schoonschip should add them up, to
obtain 2*f1(. . .)*f2(. . .).

The solution to this problem is to rename the indices. Indices that are
repeated summation indices, whose names are not really relevant, may be
declared in a Sum list:Sum list

Sum mu,nu

In both cases, Schoonschip then renames the indices in the same way, and the
results are identical. The Sum list must come after the I list. It is best placedSum list rules
near (before) a line with a * in column 1. The indices appearing in a Sum list
must have been defined before, but not in the *fix section (to be explained*fix

later). The following example illustrates the Sum declaration:

C Example 6.

I mu,nu,la,ka

Z XX = D(mu,nu)*f1(a1,a2,mu)*f2(a3,a4,nu)

+ f1(a1,a2,mu)*f2(a3,a4,nu)*D(mu,nu)

Z YY = D(la,ka)*f1(a1,a2,la)*f2(a3,a4,ka)

+ f1(a1,a2,la)*f2(a3,a4,ka)*D(la,ka)

Sum la,ka

*end

Note how the indices la and ka are replaced by the invented name Naa.

7. Functions

Next, we come to functions. Functions may have arguments, which must befunction arguments
single quantities separated by commas. There is an extension involving tables,
to be explained later. Expressions in brackets are also allowed as arguments.
As a special facility, functions may have characters as arguments. Only singlecharacters
characters are legal, and they must be prefixed with a ". Thus f1("A,"s) is
legal. See the discussion of the Compo command in Chapter XII, Substitution
Commands, for examples. Finally, one may have essentially numerical ex-
pressions, which, as described earlier, work out to short integers at executionessentially

numerical
expression

time, after truncation and rounding. These expressions may include almost
anything that works out to a number. They may even contain previously eval-
uated expressions; but such expressions must be “Keep” files (see Chapter VI,Keep

7. Functions 19

Z Files), enclosed in brackets, which themselves give a single number.

A function containing an expression in brackets as an argument must some-
how be replaced before it reaches the output store, because Schoonschip retains
the definitions of expressions in brackets only until then. That means there
must be an equation (or rather, a substitution, as it will be called) leading to
the replacement of such a function, before the next * line.

Consider the following example of a function with legal arguments:

f1(a1,p,q(3),"X,pDq,17-22,(23*a5-b5),f2)

This function must be replaced before the * line because of the next to last
argument. There is no such problem in the following case:

f2(a3,7-2,pDq,"A)

It is not legal to start with numbers outside the short number range oc-
curring all by themselves. Thus

f1(1E25)

is illegal and produces an error. But f1(2.341) is accepted and changed into
f1(2). And

f1(1-7E25)

is accepted as input, but gives an overflow message at execution time.

This is pretty academic, and we mention it only for completeness. For a
full understanding, one has to know what really goes on inside Schoonschip.
Since numerical function arguments must be short integers, any numerical short integers
expressions that occur as function arguments must be “integerized.” There
is an operational symbol for that, namely, Integ. At input time, Schoon- Integ

schip analyzes this situation very superficially, and when in doubt applies the
Integ operator to the argument. That happens as soon as a / or *, etc., is
encountered. Thus f1(1E25-1) is translated to f1(Integ(1E25-1)). When
this expression is seen at execution time, the argument is normally rounded
and truncated. Overflow occurs if the number is outside the range −128 to 127.

By default, Integ truncates a number towards zero, i.e., 1.9 becomes 1

and -1.9 becomes -1. That action may be changed with the Round statement: Round

Round on

Numbers are subsequently rounded to the nearest integer (i.e., 1.9 becomes
2, -1.9 becomes -2). The statement

Round off

20 IV. Type Definition

restores the default option, truncation towards zero. In either case, a floating
point number is first rounded in the last 10 bits, to allow for stray bits.

A consequence of this implicit conversion to integers is that composite
nonnumerical arguments are to be avoided; for example, f1(3-a) gives anavoid composite

arguments error report, not upon input, but when execution occurs. Since it may well
happen that the symbol a is a dummy, to be replaced by a number during the
calculation, things have to be treated this way, and cannot be flagged at input
time. That will become clear later.

The following rules for the complex conjugation of functions are built in.Conjg for functions
When Conjg is applied to a product of functions, Schoonschip

• reverses the order of all functions;

• conjugates those quantities whose reality properties are known, including
the function arguments;

• postpones complex conjugation of functions that have been classified asF list
u (for undefined) in the F list by the assignment =u.=u

In this context, an expression in brackets is considered to be a u function.u function

C Example 7.

A a1,a2=i,a3v=c

F f1,f2=i,f3v=c,f4=u

Z xxv=conjg{ f1(a1,a2,a3)*f2(a1,a2,a3,f3)*f4(a1,a2,a3) }

*end

A special problem arises if an expression in brackets occurs as an argument
of a non-u function. In such cases the expression in brackets is conjugated,non-u conjugation

problem that is, the operator Conjg is applied to it. Unfortunately, that is not possible
for symbols of u type; thus, if a u function occurs as an argument of a non-
u function subject to complex conjugation, then Schoonschip stops. In such
cases the function of which the u function is an argument must be declared to
be of u type, too, which is actually quite logical. A u function will generally
be replaced by something else later on, and then the complex conjugation can
be worked out.

8. Built-in Functions

Several functions are built in, along with their reality properties; and here
another problem arises. The Epf function (the totally antisymmetric WeylEpf function reality

8. Built-in Functions 21

tensor) is real in three dimensions, where it represents the cross product of
vectors; but it must be considered as imaginary in four-dimensional Minkowski
space (because one of the components must be 4). The default situation in
Schoonschip is four dimensions, and thus Epf is considered to be imaginary.
That can be changed by mentioning Epf in the F list with the option =r.

X expressions are always considered to be undefined with respect to complex X expressions
undefinedconjugation. They are discussed in the next chapter.

The built-in quantities are: built-in quantities

• algebraic symbols: i=i.
This is the usual i, and the relation i^2=-1 is built in, although not
always instantaneously applied.

• functions: D, Epf=i, G=i, Gi, G5=i, G6v=c, G7, Ug=c, Ubg, DD, DB, DT,
DS, DX, DK, DP, DF=u and DC.

Special rules are built in for these functions. Some of these functions must
not be used, because they serve special purposes. The function DD is used
internally for all kinds of things.

The function D is the Kronecker delta function and has been explained D, Kronecker delta
before. The Epf functon is the Weyl tensor, and it may have any number of
arguments. If it has six arguments, it is assumed to be the Weyl tensor in six- Epf, Weyl tensor
dimensional space. A special command that reduces products of Epf to at most
one Epf is built in. It is furthermore assumed that Epf is totally antisymmetric
in all its arguments, and that it commutes with all other functions. Both the
D and Epf functions are taken to be linear in their nonnumerical arguments, linearity
in particular, D(-x,y) = D(x,-y) = -D(x,y), and similarly for Epf.

The functions G, Gi, G5, G6, G7, Ug and Ubg refer to gamma matrices
and Dirac spinors, which occur in relativistic quantum mechanics. They are gamma matrices

Dirac spinorsdiscussed in Chapter XVII, Gamma Algebra. Users not interested in that
subject may forget about them. They account for about 8% of the code in
Schoonschip, not worth removing.

The functions DB, DT, DP, DK and DC are numerical functions that are useful numerical functions
in many situations. Their arguments are mostly short numbers (essentially
numerical expressions), for which we use the notation m, n, n1, . . . , j, j1, . . . ,
etc., in the following.

DB with one argument is the factorial function, and DB with two arguments factorial
is the binomial function. They are not allowed to have negative arguments. binomial
The definitions are:

DB(n) = n!
DB(n,m) = n!/{m!(n − m)!}

22 IV. Type Definition

Internally, the calculation of the binomial function is word (=16 bits) bound,
and fails for DB(19,m), m = 8, 9, . . . and higher.

The function DT is the theta function or step function, and is very useful fortheta function
switching terms on and off. It may have any number of numerical arguments,
is one if all arguments are positive or zero, and is otherwise zero:

DT(n1,n2,. . .) = 0 if one or more ni negative
= 1 otherwise

The function DP is the permutation symbol. The arguments are permutedpermutation symbol
until they are in ascending order, and the value of DP is 0 if any two arguments
are equal, and otherwise it is ±1, depending on the sign of the permutation:

DP(n1,n2,n3,. . .) = +1, -1 or 0,
0 if two numbers are equal,

+1 if the permutation to ascending order
is even,

-1 if the permutation is odd.

For example, DP(2,1) = -1.

The function DK is something like a numerical Kronecker delta. It is one ifnumerical
Kronecker delta the arguments are equal; otherwise it is zero:

DK(n1,n2) = 1 if n1 = n2,
= 0 otherwise.

The fact that it is explicitly a numerical function makes it different from the
D function. For instance, DK may be part of a function argument expression
as in f1(. . . ,4-2*DK(n1,n2), . . .).

The function DC is unity if the sum of its arguments is zero, and is otherwiseconservation
function zero (it may have any number of arguments). It is primarily intended for

situations where one has a conservation rule. It is also used for character
handling, and then there are various rules, to be discussed in Chapter XVI,
Character Summation.

The function DS is the summation function. Its application for charactersummation function
summation will be explained in Chapter XVI. Except for that, it must appear
in the form:

DS(J,j1,j2,(F(J)),(H(J)))

or

DS(J,j1,j2,(F(J)))

8. Built-in Functions 23

Here F and H are expressions that may depend on J. The quantities j1 and
j2 must be essentially numerical expressions, with j1 ≤ j2; and H must be
a numerical expression (not limited to short numbers or integers), keeping in
mind that the values of J will be integers. When working out this function,
Schoonschip makes J run from j1 through j2, and creates a sum of terms. Each
term is of the form

F(j)*G(j)

where G(j) is defined to be one for the first G (thus G(j1)= 1), and sub-
sequent G’s are equal to the product of the previous G and the numerical
expression H for that value of J. The second version of DS corresponds to
H ≡ 1. In either case, if j1 > j2, the result is zero.

That sounds more complicated than it is. The expression H simply defines
a recurrence relation among the coefficients of the sum. For example, 21 terms
of the series for ex are given by:

DS(J,0,20,(x^J),(1/J))

The recurrence relation G(j) = G(j−1)*H(j) for the coefficients gives 1/j!
as coefficient G(j) of the jth term. This is a better way of handling the
factorial, both from an economical and numerical point of view, than writing
1/j!, that is, 1/(DB(j)).

There is an important restriction. If more than one DS function occurs in summation function
restrictionan expression, one must use a different name for the summation variable in

each (J in the above example). Thus use J1, J2, etc.

C Example 8.

Digits 20

Ratio 0

Z xx = DS(J,0,20,(1.),(1/J))

*begin

Digits

Ratio

Z yy = DS(J,0,4,(X^J),(1/J))

*end

Chapter V

X, D and T Expressions

So far only Z expressions have occurred in the examples. They are expressions
that Schoonschip evaluates. There are other kinds of expressions that may be
defined but not immediately evaluated, which are called as they are needed in
later calculations. Primary among these are X and D expressions.

1. X Expressions, Cosine Example

As a simple example, take the series for cosx. The equation for cosx is cos

cos x = exp ix + exp−ix
2

This series may be obtained as follows. First define exp y, and then write cos x exp
in terms of the exponential, arbitrarily keeping 6 terms:

C Example 9.

X EXP(y) = DS(J,0,6,(y^J),(1/J))

Z COS = { EXP{ (i*x) } + EXP{ -(i*x) } }/2

*end

Important rule: An X expression must be defined before it can be referred X expression order
to. It is permissible to have X expressions appearing in other X expressions,
provided they were defined before.

The rules for arguments of X expressions are the same as those for functions, X expression
argumentswhich is why the argument i*x is enclosed in brackets. In this example it gets

replaced on the right-hand side of the EXP definition, so that the expression
in brackets indeed disappears as a function argument. That may seem like

25

26 V. X, D and T Expressions

an inefficient method of defining COS, but it is actually a practical way to
define it once and for all. In fact, it is possible to specify an argument for
the Z expression, and to tell Schoonschip not to throw the expression awayZ expression

arguments after printing it; one may then refer to COS(x) later as if it were also an X

expression. How to do that will be discussed in Chapter VI, Z Files.

Arguments like those appearing in the definition of the X expression will
often be called dummies in the rest of this manual. They are to be replaceddummy arguments
by the arguments found in the call (in the Z expression) at execution time. In
other cases some arguments may be dummies and others not, as we shall see.
In those situations, a dummy has to be followed by a wiggle: ~. In X and D~ dummies
expression definitions, and also table (T expression) definitions, all arguments
are dummies; and the wiggle need not be included.auto dummies

One may have up to 500 X expressions.number allowed

2. D Expressions, Determinant Example

D expressions are arrays of X expressions. They may be used, for example, toD expressions
specify matrices. They are just like X expressions, except for the first argument.
When a D expression is called, the first argument must be a number, which
is then used to select the expression from the array. Since the expressions
in X or D expressions may again be X or D expressions, the possibilities are
quite extensive. For example, suppose there is a 3 × 3 matrix with elements
(a11,a12,a13), (a21,a22,a23), (a31,a32,a33) in rows 1, 2 and 3. The first
part of the following example produces the determinant of the matrix:

C Example 10.

B a11,a21,a31

D rc(n)=a11,a12,a13,

a21,a22,a23,

a31,a32,a33

X matrix(n,m)=rc(3*n+m-3)

Z xxx = DS{J1,1,3,(DS{J2,1,3,(DS{J3,1,3,

{ DP(J1,J2,J3)*matrix(J1,1)*matrix(J2,2)

*matrix(J3,3) }

}) }) }

*begin

3. Dummy Correspondence 27

3. Dummy Correspondence

As shown in the example, an X or D expression can have many arguments. In expression
argumentsfact, X or D expressions may be arguments of X or D expressions. Here one

must follow an important rule. To make it possible for Schoonschip to analyze
the right-hand side of an expression correctly, a dummy must be of the same dummy

correspondencekind as the argument it is to replace. The “same kind” generally means one
of four cases:

• symbols with or without an exponent
• vectors
• functions
• tables

Functions and expressions (and files, to be discussed later) are of the same
kind. Algebraic symbols must be used as stand-ins for dot products, vector types
components, and also for short numbers (−128 to +127, the same as those
that may appear as function arguments). Functions may stand for X or D

expressions, as shown below in the second part of the example.

It is best to play this for certain, and really use dummies of the same forcing dummy
correspondencekind as the arguments that will replace them, that is, X expression types for

X expressions or D expressions, functions for functions, etc. In the example
below, the use of ra, for instance, instead of f1, is advised in the definition of
the X expression matrix. Vector components, dot products and numbers are
illegal as dummies. If they are to be substituted in an X expression, use some
algebraic symbol to represent them, as we did with n and m in these examples.

4. Determinant Example Continued

In the second part of Example 10, we define a general X expression for a
determinant, that may be called to compute the determinant of any matrix. 3 × 3 determinants
Two determinants are computed.

F f1

B a11,a21,a31,b11,b21,b31

D ra(n)=a11,a12,a13,

a21,a22,a23,

a31,a32,a33

28 V. X, D and T Expressions

D rb(n)=b11,b12,b13,

b21,b22,b23,

b31,b32,b33

X matrix(n,m,f1)=f1(3*n+m-3)

X DET(f1) = DS{J1,1,3,(DS{J2,1,3,(DS{J3,1,3,

{ DP(J1,J2,J3)*matrix(J1,1,f1)

*matrix(J2,2,f1)*matrix(J3,3,f1) }

}) }) }

Z detb=DET(rb)

Z deta=DET(ra)

*begin

In the third part of this example, it is shown how the X expression DET can
be made into a D expression that gives determinants for 1× 1, 2× 2 and 3× 3n × n

matrices.determinants

F f1

B b11,b21,b31

D ra(n)=(a1-a2),0,

0,(a1+a2)

D rb(n)=b11,b12,b13,

b21,b22,b23,

b31,b32,b33

D rc(n)=c11

X matrix(k,n,m,f1)=f1(k*n+m-k)

D DET(n,f1) =

f1(1) ,

DS{J1,1,2,(DS{J2,1,2,

{ DP(J1,J2)*matrix(n,J1,1,f1)*matrix(n,J2,2,f1) }

}) } ,

DS{K1,1,3,(DS{K2,1,3,(DS{K3,1,3,

{ DP(K1,K2,K3)*matrix(n,K1,1,f1)*matrix(n,K2,2,f1)

*matrix(n,K3,3,f1) }

}) }) }

Z deta=DET(2,ra)

5. Tables 29

Z detb=DET(3,rb)

Z detc=DET(1,rc)

*end

Several remarks are in order. First, note how items in a D expression array brackets in arrays
must be enclosed in brackets if the expression contains more than one term.
The rule is that each entry must be one term only (an expression is a sum of
terms, each term is a product of factors). An expression enclosed in brackets terms, factors
counts as one factor in a term. Secondly, there is the question of DS arguments.
For the first argument, the summation index, one must use different variables
for each DS function. Thus J1, J2 and J3 must not be used more than once.
This was mentioned before, and in this example it is relevant.

5. Tables

T expressions, or better, tables, are for use as function arguments. There are T expressions, tables
also character tables, discussed in Chapter XVI, Character Summation. Tables
represent arrays of quantities that may be selected as function arguments, and
at execution time the appropriate argument is selected on the basis of the
value of the first argument. The following example shows a complicated way
of obtaining f(a)+f(b)+f(c):

C Example 11.

T List(n)=a,b,c

F f

Z compl = DS(J,1,3,{ f(List(J)) })

*begin

The idea is really this: to enable summing over a series of arguments
that can then be listed by using a table. The rules for entries in a table
are simple: they must be valid function arguments. Tables can be nested, table entries
essentially allowing matrices of arguments. The first argument of the table in nesting
a call selects an item from the corresponding table list. If that item is again
a table, then the second table list is looked up, with the second argument
determining which argument to take. And so on. All arguments are treated auto dummies
as dummies, and table entries may depend on them. Since an expression
enclosed in brackets may appear in the table list, complicated constructions essentially

numerical
arguments

are possible. If such expressions are essentially numerical, so that they must
ultimately be converted to a short number, the operator Integ must be placed

Integ

30 V. X, D and T Expressions

in front of them. Conjg is also allowed.Conjg

A x=c

T r1(n)=a11,a12,a13

T r2(n)=a21,a22,a23

T r3(n)=a31,a32,a33

T matr(n,m)=r1,r2,r3

T weird(n,a1,a2)=Conjg(a1+a2),Integ(3*a2)

X XX(a1,a2)=a2*a1

Z sqa13 = DS(J,1,3,{f1(matr(1,J))*f1(matr(J,3)})

Z weirdo=XX(weird(1,x,7),weird(2,x,7))

*end

There is a subtlety here. Whatever follows Conjg, enclosed in brackets, isConjg

considered to be an expression. It must not survive as a function argument
beyond the * line. Thus it would have been illegal if in weirdo we had had f1

instead of the X expression XX.

General rule: Anything that can occur as a function argument can occur as
an element in a table list. That includes, for example, characters (notation:table entries
"X is the character X). Be careful with numbers; they are treated like function
arguments, and nonintegers are truncated.

Chapter VI

Z Files

Z files very much resemble X expressions, but there is one important difference. Z file
definitionA Z file contains the result of a Schoonschip calculation. A Z line defines a

Z file, whose name follows just after the Z. A Z file may have arguments, can
be stored in a variety of ways, and can be part of a problem, just like an X

expression.

Schoonschip has been designed under the assumption that Z files tend to
be large. Elaborate measures have been taken to allow them to be as large as
possible. The number of Z files that can be handled at any one time is limited number of

Z filesto about 200.

In earlier versions of Schoonschip, what we now call Z files were simply
called files. The terminology “Z file” has been introduced to try to avoid
confusion with the kind of disk file that is managed by the host operating
system, and which of course Schoonschip also uses. In contexts where it seems
pretty clear that an operating system file is not meant, we may revert to the
old language.

1. Local and Common Files

First of all, Z files are divided into two categories, local and common. All of the local files
*yepZ expressions that have been shown so far are local. Local files are normally

lost over a * line, except over a *yep. A local file may be kept over a *next *next
line, provided it is mentioned in a Keep list: Keep

Z xxx(a,b)=(a+b)^ 2

Keep xxx

*next

31

32 VI. Z Files

Z yyy=xxx(c,d)

*begin

After a *begin, the local files are all lost. Schoonschip treats local files as*begin

efficiently as possible. They are kept in memory if there is room, and if they
are too big they are stored on disk and recalled as needed.

Common files are kept until they are explicitly deleted, or until the *endcommon files
line is reached. They can be written to disk for use in a later session. Schoon-*end
schip keeps all common files in a sequential file on disk. Great care has
been taken to see that such expressions are read with the least amount of
input/output activity when needed in a problem. Normally the user will not
notice these read/write activities, but he should nevertheless be aware of them
when dealing with large problems.

Problems handled by computers have a tendency to become large; that is
simply in the nature of computers. Except for the easiest cases, it is really quite
impossible for a computer to simplify an expression. While it is trivial to sim-simplifying

expressions plify a^2 + 2*a*b + b^2 to (a+b)^2, it becomes an entirely different matter
when dealing with 1, 000 or more terms. Of course, with a little help from the
user, simplification can be done, on a rather primitive level. If one recognizes a
pattern such as the one above and substitutes a^2 = apb^2 - b^2 - 2*a*b,
the output collapses to apb^2.

Besides the classification into local and common categories, Z files may be
indexed or nonindexed . That makes it possible to have arrays of Z files, muchindexed

Z files like D expressions. Indexed files are defined as follows:

• A local file is indexed if its first argument on the defining Z line is alocal indexed files
number in the range 0–32,767. There are provisions for allowing that
number to be an expression, involving, for instance, do-loop or block
variables; but at execution time such an expression must work out toindex expressions
a number. Only numbers and do-loop or block variables may appear
in these expressions, and numbers must be substituted for the latter
variables.

• A common file is indexed if it appears in the Common list with an index,common indexed
files preferably the number zero. The implication is not the existence of
Common the file with the particular index zero, but rather that the file name

represents a class of subscripted common files.

Thus,

Common abc,Xyz,fgh(0),jkl

2. Common File IO 33

defines abc, Xyz, fgh, and jkl as common files, and fgh as an indexed common
file. When subsequently found on a Z line, such files are flagged and written
to disk at the end of the calculation (but are not kept beyond the *end line).

Local files may be preserved for a subsequent calculation by using the
command Keep: Keep

Keep aaa,bbb,ccc(1),eee

This line, which should occur shortly before a *next line, causes the files in
the list to be kept over the *next. For an indexed local file, one may explicitly *next

mention an index (as with ccc above); and then only that file is kept. If several
ccc files are to be kept, one need only mention ccc without an index; then all
ccc files are kept.

2. Common File IO

There are several statements that relate to common files. First, common files
may be written to a named disk file for use in a later problem. That can be
done with the statement Write

Write xxx

All common files that exist at that moment are written (sequentially) to a disk
file named xxx. Thus xxx will in general contain many common files. This
statement must be all by itself, and not embedded in some problem. In other
words, before and after the Write line there must be a * line not containing
yep or next. *yep

*next
When one or more of the common files contained in xxx is needed in a

subsequent problem, one may Enter them: Enter

Enter xxx

This statement should be one of the first in a Schoonschip program. It must
occur before a *fix line, which is explained in Chapter VIII, Section Termina- *fix

tion. Schoonschip opens the disk file xxx and enters the names of the common
files it contains into the common file table, and the files themselves are copied
to a disk file local to Schoonschip (tape7). One may have several Enter and tape7

Write statements.

Note: Do not confuse Enter with Read. The latter is for reading normal Read

Schoonschip text from an external file.

Common files may be deleted: Delete

Delete abc,Xyz,fgh(3)

34 VI. Z Files

Again, mentioning fgh without any index results in the deletion of all fgh
files.

As the reader might guess, it is quite a problem to keep the name lists
straight when common files are entered. Schoonschip normally treats that
only when the common files are called in a particular problem. Usually there
is no trouble, but difficulties can arise when there are summation indices (seesummation index

problem the Sum declaration in Section IV.6). For that reason, it may be necessary
to declare the names of the quantities contained in the common files (not the
names of the common files themselves) before actually starting on the problem.
The statementNames

Names abc,Xyz,. . .

is meant for that purpose. In this example, it causes the name lists for the
symbols that occur in the common files abc, Xyz, . . . to be added to those
already declared in the problem so far. If this directive is not given, and
Schoonschip runs into a problem, it aborts, with an error message asking for
the Names line.

3. IO Example

Example 12 shows a very simple case. Note that the local file xxx is lost
over the *begin line, and xxx is taken to be a function. Similarly for the
common file ccc after a Delete. When this problem is run, the disk file fileC
is created. Make sure that there is not already a file by that name.

C Example 12.

P lists

Common yyy,ccc(0)

Z xxx(a,b)=(a+b)^2

Z ccc(3,a,b)=(a+b)^3

Z ccc(4,a,b)=(a+b)^4

Keep xxx

*next

F f1,f2

V p

Z yyy(p)=xxx(c,d) + p(nu)*f2(mu)

4. Large Files 35

Sum mu,nu

*begin

Write fileC

*begin

V q

Z zzz=a1*yyy(q)

Z Abc=xxx(a,b)

Delete ccc,yyy !The actual delete occurs when

!this section is done.

*begin

Z xyz=ccc(3,e,f)

*end

The statement P lists at the beginning of this example causes Schoon- P lists

schip to print all the symbols it knows before execution, along with details
such as reality properties or the dimensionality of indices. For X, D and T

expressions, the type as well as the nesting depth is shown. Brackets count in nesting depth
determining the depth.

4. Large Files

At this point it must be emphasized once more that one needs to be conscious
of the use of local and especially common files in a problem. If, for example,
yyy is a rather lengthy common file, then factors such as (yyy)^4 may lead to
very lengthy calculations. If yyy has 100 terms, that gives rise to 1004 terms,
or 100 million terms that must be sorted. That would surely fill up all of the
available disk space, to mention just one effect; and 100 terms is not really
that much as such things go. To avoid that particular disaster, Schoonschip
has a built-in output limit of about 0.5 megabytes per file. The limit can be
changed by the statement Outlimit

Outlimit,#

where # is the new limit in bytes. What to do when really big expressions
must be evaluated will be discussed later. In this context, an expression is big

expressionscalled big when it exceeds 50,000 terms.

Chapter VII

Print Options

The following statements affect text output. Only the first two characters of
the word following P are relevant.

P brackets print working out of brackets
P heads print only factors outside brackets (B line)
P input print input lines (default)
P lists print lists of all symbols (vectors, functions, etc.)
P ninput do not print input lines
P nlists do not print lists (default)
P noutput print no output (default in case of *yep)
P nstats print no statistics (default)
P output print output (default, except in case of *yep)
P stats print statistics

The following statements affect the format of the text output:

Screen try to keep lines less than 80 characters long (default)
Lprinter print up to 130 characters/line

There is also some control over the printing of individual Z files, but only
if they are currently being processed:

Print xxx,yyy, . . . print Z files xxx, yyy, . . .
Nprint xxx,yyy, . . . do not print Z files xxx, yyy, . . .
Punch xxx,yyy, . . . write Z files xxx, yyy, . . . to a file named

tape8 in Fortran-compatible form
tape8

The last statement is useful if the output is to be used for numerical input to
a Fortran program, or for plotting curves, etc.

37

38 VII. Print Options

Print options normally stay in effect until they are canceled. Exception:P heads

P heads.

The P output option, often used to force output printing in a *yep situ-P output

*yep ation, survives only one *yep.

Chapter VIII

Section Termination

The sections of a Schoonschip program are terminated by * line directives.
Here are the possibilities:

*fix Do not start execution. All names and expressions de-
fined before this statement remain valid until the *end

line.

*yep Start execution. Write the output to disk and feed in
again as input.

*next Start execution. Keep all name lists, and those local
files mentioned in Keep lists. A Keep list extends over Keep

one *next only.

*begin Start execution. After that, start a new problem. Dis-
card all names except those mentioned in the *fix sec-
tion.

*end Start execution. Stop after completion.

The *fix directive has not been explained up to now. It is used when one *fix

wants to define names, or X, D or T expressions, that are to be valid for all of
the problems that follow, including those after a *begin. The *fix section
must be the very first section, and is not allowed to contain any Z expressions.
If common files are to be Enter’d, that must be done in this section. Enter

The sequence shown above reflects the general structure of any Schoon- program structure
schip program. First there is a *fix section, and then there may be several
*yep, *next and *begin lines before the final *end is encountered.

The *yep command is extremely useful, but can only be explained properly *yep

later, after substitutions have been discussed. It is rather unique to Schoon-
schip, and is of crucial importance when dealing with large problems.

39

Chapter IX

Substitutions

Most of the discussion up to now has been about defining expressions, not
working on them. The main tools for operating on expressions are called sub-
stitutions and commands. A substitution basically amounts to looking at an substitutions
expression term-by-term and, if certain patterns match, removing something
from the term and substituting something else. This fundamental tool, intro-
duced for the first time in the 1964 version of Schoonschip, is the essential
ingredient in symbol manipulation.

There are two distinct functions here, pattern recognition and substitution.
Versions of Schoonschip since 1984 have made it possible to separate the two.
One can first look for a pattern, setting a flag based on the result of the
inspection, and then act on the flag at some later point.

Commands define certain operations to be done on the terms, that are commands
of sufficient generality to warrant building them in. For instance, there is a
command that allows the user to specify which functions commute with each
other. Schoonschip implements that by putting the functions into an internally
well-defined order, so that terms which differ only in the order of placement
of commuting functions become equal. Such an operation could also be done
with substitutions, but would be tedious.

1. Substituting for Patterns

An important concept for substitutions is that of dummies. These quantities dummies
have already been introduced in connection with X, D and T expressions; and
here they become even more useful. Let us begin with a simple example.

41

42 IX. Substitutions

Suppose a quadratic polynomial in x

ax2 + bxc

is to be integrated from x1 to x2. The integration amounts to using the rule
xn → xn+1/(n + 1), and then putting in the integration limits. That can be
done as a substitution. First look for x to any power (this is the pattern).
Then remove the pattern, and substitute the appropriate expression, which is
the integral of x to that power. The following example shows how to do this:

C Example 13.

Z integr = a*x^2 +b*x

Id,x^n~ = x2^(n+1)/(n+1) - x1^(n+1)/(n+1)

*begin

Schoonschip looks for the pattern “x to any power,” removes it if found,
and inserts instead the right-hand side of the substitution above. The value
of the power found is substituted for n in the expression. Here n is a dummy.
To let Schoonschip know that it is a dummy, a wiggle (~) must follow directly
after it on the left-hand side.

The notation Id refers to a name used often in the past for this operation,Id

namely identity.

Consider now the complications that can arise with different kinds of pat-
terns. As an example, take the same integral, but suppose there is a term
without any x. What should Schoonschip do? In the present case the term
should be treated as having a factor x0, but there will be many cases where
such terms ought to have no substitution made. In the spirit of pattern recog-
nition, a term without x is taken not to fit the pattern x^n~; and such a term
does not get worked on.

But how to deal with that in our case? A classic method is to use an extra
symbol, which we call dx here:

Z integr = (a*x^2 + b*x + c)*dx

Id,x^n~*dx = x2^(n+1)/(n+1) - x1^(n+1)/(n+1)

Al,dx = x2 - x1

*end

2. Levels, Partial Integration Example 43

What happens is that if dx along with x to any power excluding zero is en-
countered, then the first substitution is done. That leads to the removal of dx
as well. If a term without an x (the c term) passes by, the first substitution is
not done, and the dx survives. But then the second substitution is performed.
The notation Al is an abbreviation for also, but there is more to it than that, Al

as we explain further in Section 1 of Chapter XIV on Internal Procedures.
Generally, Al is used to best advantage with mutually exclusive patterns. One
should not use Al if the first substitution generates a pattern that the second
would act upon, and care is needed in case the first substitution uses more
than one level, as we explain further in Chapter XIV. Since there is a limit on
the number of Id statements, it is often necessary to use Al; and its use needs
to be well understood.

There is an equivalent notation for Al, namely, placing the corresponding Al equivalent
substitution on the same line as the first, preceded by a semicolon (;):

Id,x^n~*dx = x2^(n+1)/(n+1) - x1^(n+1)/(n+1) ;dx = x2 - x1

There may be several such also statements on one line, but lines should not multiple also’s

line lengthexceed 150 characters.

The above example shows just about all of the essentials of a substitution.
Of course more complicated patterns than just an algebraic symbol to some
power can be specified, but the principle is the same. There are substitutions
that are performed if certain functions with certain arguments are present,
and one may specify whether the order of those functions is important or not.
One may operate on function arguments, on vectors in a dot product, etc.
Basically, operations have been added through the years as they have been
needed amd found useful. Most of them are quite natural, like the ones above.

2. Levels, Partial Integration Example

Here is another example, which shows several applications. In the integral
above, more complicated terms could have occurred, such as x3 cos x. To partial integration
evaluate these, one first does partial integrations:

x3 cos x = x3 d

dx
sin x

=
d

dx

(
x3 sin x

)
− 3x2 sin x

Before doing the x-integration, one does partial integrations as many times as
necessary for the highest power of x that occurs. Assuming that at most x10

occurs, one would write:

44 IX. Substitutions

Id,10,x^n~*cos(x) = x2^n*sin(x2) - x1^n*sin(x1)

- n*x^(n-1)*sin(x)

Al,10,x^n~*sin(x) = - x2^n*cos(x2) + x1^n*cos(x1)

+ n*x^(n-1)*cos(x)

There are more elegant ways to do this, using X expressions; but that is not
the point here. A general method is shown in the latter part of Example 13,
in the examples file.

In the above lines, the substitutions are repeated on up to ten subsequentlevels
levels, as long as x to some power occurs. The final step, to be taken if no
more powers of x are present, would be the integration of cosx or sin x:

Id,sin(x) = cos(x2) - cos(x1) ;cos(x) = - sin(x2)

+ sin(x1)

3. Conditional Substitutions

If negative powers of x also occur, one has to treat them separately. Here,
conditional substitutions come in handy. One can test for the presence ofconditional

substitutions negative exponents, and set a flag depending on the outcome of the test:

IF Multi,x^-1

This tests for exponents that are a multiple of the exponent shown, -1 in thisMulti

case. If any are found, a flag is set. If the flag is set, the substitution statements
following the IF line are done, until a line with ELSE is encountered. If the flagIF . . .

ELSE . . .
ENDIF

is not set, the substitutions between the ELSE line and the terminating ENDIF

line are done. A typical sequence would be:

IF Multi,x^-1

substitutions to treat x^-n type terms
ELSE

substitutions to treat x^+n type terms
ENDIF

A NOT may be inserted following the IF, and the following sequence givesNOT

identical results:

IF NOT Multi,x^-1

substitutions to treat x^+n type terms
ELSE

substitutions to treat x^-n type terms
ENDIF

4. Survey of Patterns 45

IF’s may be nested, up to eight deep. nested IF’s

A further extension uses AND and OR statements, possibly combined with AND, OR, NOT
NOT. For example, if there are also terms without sin x or cos x:

IF cos(x)

OR sin(x)

..IF Multi,x^-1

..substitutions to treat x^-n type terms

..ELSE

..substitutions to treat x^+n type terms

..ENDIF

ELSE

substitutions to deal with x^n without sin or cos

ENDIF

A new notation, purely for readability, has been introduced. A dot (.)
in column 1 causes Schoonschip to skip all periods that follow on the line. indentation of

conditionalsIn this way, one may indent nested IF’s to show IF depth. See Chapter XI,
Conditional Substitutions, for more details.

4. Survey of Patterns

A few of the patterns that can appear on the left-hand side of a substitution
have been introduced above. The need for such patterns becomes clear as soon
as one gains a little familiarity with problems of this kind. A set of patterns
has been defined that appears adequate to deal with the situations that have
arisen in practice. To give a complete description is somewhat tedious, but
necessary. Let us do that in two rounds: first somewhat sloppily here, then
more precisely in the next chapter.

4.a. Algebraic Symbols

As long as one deals with a single quantity (including an exponent or index or
arguments) one has various options specified by keywords. One such keyword
appeared already above, namely, Multi. For algebraic symbols, the following algebraic

substitutionssubstitution patterns are possible, where n is a dummy, and n, m are numbers:

Id,a= . . . Substitute n times if a^n is found with n positive.

Id,a^n= . . . Substitute once if precisely a^n is found.

Id,a^n~= . . . Substitute once for a, any nonzero exponent.

46 IX. Substitutions

Id,Multi,a^n= . . . Substitute m/n times if a^m is found, and m has the
same sign as n; leave the rest.

Id,Once,a^n= . . . Substitute once if a^m is found, with m/n ≥ 1; leave
the rest.

Id,Funct,a= . . . Substitute for a if it appears as a function argument.
The action taken is to enclose the expression on the right-hand side
in brackets and insert it, instead of the argument a. Earlier remarks
about the use of expressions in brackets as function arguments apply
here. Such functions may not cross * lines, and must be subjected to
some substitution before that.

Id,Funct,f1,f2, . . . ,a= . . . The same as above, but only in the specific
functions mentioned.

Thus, Id,Once,a^2= . . . leads to one substitution when a^7 is encountered,
leaving a^5.

Just as before, Al (or ; on the same line) may be used in conjunction withAl

Id for mutually exclusive patterns.

4.b. Single Functions

Similar things may be written down for dot products or vector components.
For single functions, one may give the function, including arguments, some or
all of which may be dummies; and one may also have repeated dummies. Forrepeated dummies
example,

Id,f1(a~,b,c,a~)= . . .

leads to a substitution if the function f1 is found with b and c as second and
third arguments, while any argument in the first or fourth place will do, as
long as it is the same in both places. Here a is a repeated dummy. One could
have specified another dummy for the last place:

Id,f1(a~,b,c,d~)= . . .

Then the substitution is done for any arguments in the first and fourth places,
including equal arguments.

The built-in function D is special insofar as it is not generally allowed asD substitution
part of a substitution pattern. It may, however, appear all by itself, with or
without dummies. Examples:

Id,D(al,be)= . . .
Id,D(al~,be)= . . .

4. Survey of Patterns 47

For single functions, one keyword may appear. If a function has nothing
but dummies as arguments, and if the keyword Always appears, then the Always

substitution will be done even if the argument count is not the same. Thus

Id,Always,f1(a~,b~)= . . .

is also applied to f1(xx,yy,zz). The argument zz is then simply dropped.
Make sure that no case can occur where there are more dummies than argu-
ments.

Finally, one may even specify a dummy function: dummy function

Id,f1~(a,b,c~, . . .)= . . .

The substitution is done for any function whose arguments and argument
count agree.

4.c. Vectors

There are several possibilities for vectors: vector substitutions

Id,p(mu)= . . . Substitute for p(mu).

Id,p(mu~)= . . . Substitute for p with any index.

Id,Dotpr,p(mu~)= . . . Substitute for p with any index if it appears in a
dot product or as a vector component.

Id,Dotpr,f1,f2, . . . ,p(mu~)= . . . The same, but only in the specific
functions mentioned.

Id,Funct,p(mu~)= . . . Substitute if p appears as a function argument.

Id,Funct,f1,f2, . . . ,p(mu~)= . . . The same, but only in the specific
functions mentioned.

In these cases things are worked out as one would expect for vectors. In all
but the first case it is assumed that the right-hand side depends on the index
mu. For example, one might have

Id,Dotpr,p(mu~)=k(mu)+q(mu)

Then suppose pDq occurs. Schoonschip reads this as p(q), and substitutes
q for the index mu, which leads to kDq + qDq, as it should. If pDp occurs,
then Schoonschip invents an index, say Naa, substitutes this index for mu, and
writes:

{ k(Naa) + q(Naa) } * { k(Naa) + q(Naa) }

48 IX. Substitutions

A similar thing is done if p occurs as a function argument in Funct-type
substitutions:

f1(. . . ,p, . . .)

becomes

f1(. . . ,Naa, . . .)*{ k(Naa) + q(Naa) }

which leads to

f1(. . . ,k, . . .) + f1(. . . ,q, . . .)

Thus the linearity of f1 in p is assumed. This substitution should therefore
not be applied unless that is the case.

4.d. Generalities

Substitutions are straightforward for other patterns involving more than one
quantity. The only extra options that one has have to do with the ordering offunction order
functions. The keyword Adiso (allow disorder) means that the substitutionAdiso
must be done no matter how the functions are ordered. The keyword Ainbe

(allow in-between) means that the substitution is to be done if the functionsAinbe

are in the same order, even if there are other functions in-between. If none
of these keywords is present, then the substitution is done only when exactly
the same pattern is found. The pattern may involve dummies for exponents,
vectors, indices, functions and function arguments, and one may have repeated
dummies.

As a special option, one may also have factors xx^0, where xx is an algebraicabsent factors
symbol, vector component, or dot product. In that case, Schoonschip requires
that xx specifically be absent.

Dummy correspondence: We stress here that one must (repeat: must) use
the same kind of symbol for a dummy as the one which is to replace it at
execution time. See the discussion on this subject in Section V.3, Dummy
Correspondence.

Forty substitution levels are available. If more levels are needed, a linesubstitution levels
with *yep must be inserted. The level count is printed by Schoonschip next*yep

to every substitution. More levels are needed for a given substitution when
the bracket depth is larger. It is often advantageous not to use brackets unlessbrackets
they are strictly necessary. For example, it is better to write

Id,x^n~ = x2^(n+1)/(n+1) - x1^(n+1)/(n+1)

which needs two levels rather than

4. Survey of Patterns 49

Id,x^n~ = (x2^(n+1) - x1^(n+1)) /(n+1)

which needs three levels. Schoonschip generates a substitution for every bracket
pair. If you want to see what Schoonschip does, use the option P brackets. P brackets

Chapter X

Patterns

In this chapter we give a more systematic discussion of substitution patterns.
It is intended mainly for reference and for special situations, and may be
skipped on a first reading.

Patterns in Schoonschip can be organized into about 17 classes. In practice
one will rarely realize to what class a given pattern belongs; but we neverthe-
less discuss the classification, for completeness. For each pattern we describe
the action that occurs when it is found, keeping in mind that that may be
influenced, postponed or even inhibited by means of condition flags.

The classification is based on what appears on the left-hand side of the = left-hand side
substitution rulessign on an Id or Al line, or following IF, AND, OR or their negated versions.

Only products of factors may occur (thus there is no + or - sign, except in ex-
ponents or function arguments); and no brackets may occur, other than those
associated with a function and its arguments or a vector and its index. Thus,
a pattern like a+b or a*(c+d) is illegal. Besides a pattern, a keyword may
be given, which influences how Schoonschip reacts to the pattern. Finally, we
will encounter repeated dummies. That means that the same dummy appears repeated dummies
two or more times on the left-hand side of a substitution. In such a case,
Schoonschip verifies when the pattern is matched that what appears in the
places corresponding to the dummy positions is the same, whatever it may be.

1. Classes

Here are the various classes, with examples given in the next section. In the
following, a, b, . . . stand for algebraic symbols, n, m, . . . for short numbers,
p, q, . . . for vectors, f1, f2, . . . for functions, etc.

51

52 X. Patterns

0. Pattern: f1(a~,b~, . . .) Function, all arguments nonrepeated dum-
mies.

Optional Keyword: Always

Action: Substitute each time the function is found, provided the number
of arguments agrees.

If the keyword Always is given, then substitute irrespective of the number
of arguments in the function found. It is up to the user to see to it that
the number of arguments in the version of f1 that is found equals or
exceeds the number of arguments actually appearing on the right-hand
side of the substitution.

1. Pattern: a^n Symbol with exponent, no dummy.

Keyword: Multi

Action: When a^m occurs, divide m by n, and if the result truncated to
an integer comes out to be one or more, substitute that many times. The
remaining exponent is put back. Thus a^2 applied to a^7 leads to three
substitutions, and one factor of a is left. The exponent may be negative:
a^-2 applied to a^-7 leads to three substitutions and a remainder of
a^-1. If n and m have opposite signs, no substitution is done.

If the exponent n is absent, the keyword Multi is understood, and an
exponent of 1 is used.

2. Pattern: pDq^n Dot product with exponent, no dummy.

Keyword: Multi

Action: Same as in Class 1.

3. Pattern: a^n Symbol with exponent, no dummy.

Action: Substitute once if exactly a^n is found.

4. Pattern: pDq^n Dot product with exponent, no dummy.

Action: See Class 3.

5. Pattern: p(mu) Vector with index, no dummy.

Action: Substitute once if p(mu) is found.

6. Pattern: p(mu~) Vector with dummy index.

Action: Substitute for every p(. . .) for any index. The substitution does
not apply if the vector p appears as a factor in a dot product or as a
function argument, and also does not apply to vector components such
as p(3) (i.e., if the index is a number).

1. Classes 53

7. Pattern: a or mu or pDq or p(n) Symbol (index, dot product, vector
component).

Keyword: Funct

Action: Replace a (or mu etc.) when it occurs as a function argument.

Note: Such functions must be substituted for before the * line, because
an expression as a function argument cannot survive a *. If functions
are mentioned between the keyword and the argument, then only those
functions will be affected.

8. Pattern: a^n or pDq^n Symbol or dot product with exponent.

Keyword: Once

Action: Substitute once if a^m occurs with m/n positive and equal to
or larger than one. Keep the remainder. Thus if the pattern is a^2 and
a^7 occurs, there is one substitution and a^5 remains.

9. Pattern: a^n* . . . f1(mu,b, . . .) One function and anything else.

10. Pattern: f1(mu,a,b~, . . .) One function.

11. Pattern: Anything.

Keyword: Adiso

Action: Substitute if all the factors are found, even if the functions found
are not in the same order as in the left-hand side of the substitution.

Note: Adiso stands for Allow disorder.

Note: The expression is put at the location of the first function removed.

12. Pattern: Anything.

Keyword: Ainbe

Action: Substitute if all factors are found with the functions in the same
order, although there may be other functions in-between.

Note: Ainbe stands for Allow in-between.

Note: The expression is put at the location of the first function removed.

13. Pattern: Anything.

Action: Substitute if all factors are found, with the functions in the same
order and no other functions in-between.

Note: The expression is put at the location of the first function removed.

14. Not used.

15. Pattern: p(mu~) Vector with dummy index.

Keyword: Dotpr

Action: Substitute for p if p is part of a dot product appearing with a
positive exponent.

54 X. Patterns

16. Pattern: p(mu~) Vector with dummy index.

Keyword: Funct

Action: Substitute if the vector p is found as a function argument. If one
or more function names is mentioned between the keyword and p(mu~),
then the substitution will be done only in those functions.

All of this sounds a lot more complicated than it is. These classes cover
most cases that one can imagine, but the user does not have to know to which
class a given substitution belongs. Most substitutions are natural, in the sense
that it is fairly obvious what actions they take.

2. Examples

We now give examples, essentially going through all the possibilities. The
same starting expression will be used in all cases, and we use a *fix section*fix

to specify it. Then the several cases follow, all separated by a *begin for a*begin

fresh start.

C Example 14.

V p,q

A a,b,c,d,e,f,g,h

I mu,nu

F f1,f2,f3

X expr=f1(a,b,p)*f2(a,c,q)*f3(d,e)*f1(g,h)*

{ a^7 + a^-7 + a^2 + pDq^2 + pDp + p(mu) + p(nu) }

*fix

C Class 0, no keyword.

Z xxx=expr

Id,f1(a1~,a2~)=a1^10*a2^20

*begin

C Class 0, keyword Always.

Z xxx=expr

Id,Always,f1(a1~,a2~)=a1^10*a2^20

*begin

2. Examples 55

C Class 1, keyword Multi.

Z xxx=expr

Id,Multi,a^3 = xyz + hij

*begin

C Class 2, exponent 1, no keyword.

Z xxx=expr

Id,pDq = XYZ + HIJ

*begin

C Class 3, no keyword.

Z xxx=expr

Id,a^2 = a1^7/15

*begin

C Class 5.

Z xxx=expr

Id,p(mu) = - q(mu)

*begin

C Class 6.

Z xxx=expr

Id,p(mu~) = - q(mu)

*begin

C Class 7, keyword Funct.

Z xxx=expr

Id,Funct,a = a27

Id,f1(a1~,a2~,a3~) = 200*a1*a2*a3

Al,f2(a1~,a2~,a3~) = a1^10*a2^11*a3^12

*begin

C Class 8, keyword Once.

Z xxx=expr

Id,Once,a^2 = XXX

*begin

56 X. Patterns

C Class 9.

Z xxx=expr

Id,a^2*f2(a1~,c,p~) = F2(a1,c,p)

*begin

C Class 10.

Z xxx=expr

Id,f1~(a,b~,p~) = F(a,b,p)

*begin

C Class 11, keyword Adiso.

Z xxx = expr

Id,Adiso,f1(g,h)*f1(a~,b~,c~) = F1(a,b,c,g,h)

*begin

C Class 12, keyword Ainbe.

Z xxx=expr

Id,Ainbe,f1(g,h)*f1(a~,b~,c~) = F1(a,b,c,g,h)

Id,Ainbe,f1(a~,b~,c~)*f1(g,h) = F2(a,b,c,g,h)

*begin

C Class 13.

Z xxx=expr

Id,f1(x~,b,p)*f2(x~,c,q) = F(x,b,p,c,q)

*begin

C Class 14, not used.

C Class 15, keyword Dotpr.

Z xxx=expr

Id,Dotpr,p(mu~) = - q(mu)

*begin

C Class 16, keyword Funct.

Z xxx=expr

Id,Funct,p(mu~) = - F1(a,b,mu)

*end

Chapter XI

Conditional Substitutions

IF, ELSE, ENDIF, AND, OR and NOT have already been introduced in earlier
chapters. Here, we expand a bit on their use. The general structure is:

IF pattern
substitutions
ELSE

substitutions
ENDIF

The ELSE is optional. The IF statement may be followed by AND and/or OR ELSE optional
statements. IF, AND or OR may be followed by NOT, which inverts the action. IF with AND, OR,

NOT, =Finally, the pattern may be followed by an = symbol and an expression. In
such a case the substitution is actually done only if the pattern fits. The
pattern may belong to any of the classes discussed in the previous chapter.

Within Schoonschip, IF statements set or clear a bit, one bit being reserved
for each IF depth. Nesting is allowed up to a depth of eight, so eight bits are nested IF’s
provided. Successive AND and OR statements act as filters; that is, whether
the statement and those that follow it are processed, up to the next ELSE (if
present) or ENDIF at the same nesting level, depends on how the bits are set
at that stage. Here are the rules for setting the bits:

A successful IF (or unsuccessful IF NOT) causes the bit to be set. logical syntax
An AND (or AND NOT) statement will be inspected only if the bit
is set. If successful (or not successful, for AND NOT), the bit re-
mains set; else it is cleared. An OR (or OR NOT) statement will be
inspected only if the bit is not set. If successful (or not success-
ful, for OR NOT), the bit is set. The substitutions or commands
following such a sequence will be inspected if and only if the bit

57

58 XI. Conditional Substitutions

is set. The substitutions or commands following an ELSE will be
inspected if and only if the bit is cleared.

Do not put any substitutions or commands between the IF, AND or ORambiguous logic
statements if there is an ELSE. The reason is that substitutions and commands
following an ELSE are on the same level as those following the preceeding IF,
AND, OR group. The ELSE becomes ambiguous in such a case. Also do not put
AND or OR after an ELSE, which again becomes ambiguous.

The fact that an expression may be given on the IF, AND, OR lines allows
for very compact code. For example, to integrate any polynomial in x (seepolynomial

integration Example 15):

IF NOT x^-1 = [Log(x)]

AND NOT x^n~ = x^(n+1)/(n+1)

Al,Addfa,x

ENDIF

The command Addfa attaches the factor given, x in this case. It will beAddfa

executed only if none of the two previous substitutions applies. Note the use
of Al (rather than Id) for the Addfa command. This may be done becauseAl

the statement does not use anything that might be produced by the previous
IF and AND statements.

Note the symbol (we stress, the symbol) [Log(x)].

Here are some comments about substitution level assignments for condi-levels
tional statements. Schoonschip assigns IF, AND and OR statements to the same
substitution level. IF is like Id, OR and AND are like an Al level assignement.
A subsequent ELSE is assigned to the same level as the associated IF. The first
substitution following an IF, AND, OR sequence may have Id or Al; the level
is assigned as usual. If none of the IF, etc., substitutions actually performs
a substitution, then one should use Al. However, if such a substitution needs
the completion of the previous IF, etc., substitutions, then Id should be used.
The same holds after an ELSE, where Id must be used for the first substitution
following the ELSE, if that substitution needs the completion of the IF, etc.,
substitutions. Note that these last substitutions may be far up.

If an AND or OR substitution depends on the result of previous IF, etc.,
substitutions, then it should not have the Al type assignment that Schoon-
schip would give it. To force level alignment for such a case, simply put a line
with Id before the AND or OR statement, as in

IF a1=2*(a1+a2)

Id

AND a1=(a4+a5)

XI. Conditional Substitutions 59

Here is an example:

L 1 IF a3=2*(a1+a2)

L 1 AND a7=5*a1*(a7+a8)

L 3 Id,a1=0

L 4 Id,Count,x,a1,1

. . .

L 1 ELSE

L 3 Id,a1=3

ENDIF

L 5 Id,. . .

The last level shown (L 5) is the maximum of: {level when reaching ELSE,
level when reaching ENDIF}.

Compare with the case where Al is used:

L 1 IF a3=2*(a1+a2)

L 1 AND a7=5*a1*(a7+a8)

L 1 Al,a1=0

L 3 Id,Count,x,a1,1

. . .

L 1 ELSE

L 1 Al,a1=3

ENDIF

L 4 Id,. . .

Chapter XII

Substitution Commands

Certain operations are difficult or impossible to do with simple substitutions,
and a number of facilities have been built in that deal with special situations.
They are generally called substitution commands, or commands for short, and commands and

levelsthey perform actions at the levels where they are placed. They generally
require at least one level, and sometimes the number of levels they use affects
performance. The most common syntax for a substitution command is: command syntax

Id,keyword,parameters separated by commas

in which case Schoonschip uses a number of levels that depends on the com-
mand. An alternate usage is

Id,#,keyword,parameters separated by commas

where # is some number < 40, in which case Schoonschip sets aside # levels
for the command. The Gammas command is one for which this is especially Gammas

relevant.

For example, suppose that some function is symmetric in its arguments, say
f1(a,b,c) = f1(b,a,c) = . . . In such a case one would like the arguments
to be arranged always in the same order. The command Symme

Id,Symme,f1

causes Schoonschip to scan every instance of the function f1 that passes by at
the current level, and to rearrange its arguments in a well-defined way (first-
defined symbols first). This is much easier than the perhaps very long set of
substitutions that would do the same thing. One would have to know before-
hand what arguments could appear, and then go through all the combinations.

61

62 XII. Substitution Commands

1. List of Commands

For commands, only the first four characters of the name are relevant, the firstcommand names
three if no confusion is possible. They may be either upper or lower case. The
following commands are available:

Absol Make the sign of the numerical coefficient plus.
Addfa Add factor.
All Round up (collect) all appearances of a vector, or ap-

pearances of all vectors in a specified function.
Anti Scan functions for characters with an underscore (_).
Asymm Function is antisymmetric under interchange of argu-

ments.
Beep Send ctrl g to the terminal (normally a beep).
Coef Inspect numerical coefficient.
Commu Rearrange commuting functions.
Compo Compose names from characters.
Count Count certain occurrences.
Cyclic Function is invariant under cyclic permutation of argu-

ments.
Dostop Clears, sets or tests the do-loop forced exit flag.
Epfred Reduce products of Epf functions.
Even Function is even in sign of arguments.
Expand Expand frozen files.
Extern Call user defined subroutine.
Gammas Throw the book at gamma matrices.
Iall Inverse of All.
Ndotpr Construct anomalous dot products (for use with gam-

mas).
Numer Insert numerical values.
Odd Function is odd in sign of arguments.
Order Order functions based on the first two arguments.
Print Print message to standard output.
Ratio Rationalize.
Spin Sum over spins of spinor functions Ug, Ubg.
Stats Count how often this command is called.
Symme Function is symmetric under interchange of arguments.

2. Internal Ordering 63

2. Internal Ordering

Internal ordering in Schoonschip is always done on the basis of “smallest first,”
not only for the purposes of the commands of this section, but also for the
printout of quantities not mentioned in the B list. That means the following
ordering for quantities of different type: type order

• index
• vector
• function
• algebraic symbol
• character
• number (short number)
• vector component
• dot product

For quantities of the same type, the ordering is according to when a quan-
tity is first encountered. For dot products, the earliest defined vector counts
first. To guarantee a certain ordering, the quantities can be given in the ap-
propriate list in the desired order.

The ordering for numbers is not entirely what one might expect: 0 before number ordering
positive numbers up to 127, then 128 = −128, −127, −126, . . . , −1. This is
because of the two’s complement notation for numbers.

3. Description of Commands

We now discuss the commands one by one. The general format or command
template is shown first, and examples sometimes follow the discussion. Op-
tional command arguments are indicated in a few templates by square brackets
[] in the normal text font. Commands may also occur in IF . . . ELSE . . . ENDIF
statements, but what success or failure means is often not well-defined. As a
rule, success means “some action has been taken.” For example, Addfa always
gives success.

Id,Absol

The numerical coefficient of the term inspected is forced to be positive.
This command needs no levels.

Id,Addfa,expression

The expression specified is attached as a factor. This command is mainly
intended for use with conditional statements; the expression can be attached

64 XII. Substitution Commands

depending on previous actions. There are no particular limitations on the sorts
of expressions that can occur here; anything allowed in a Z expression or on
the right-hand side of a substitution is allowed, except that there must be no
dummies.

C Example 15.

C Integration of a polynomial.

A a,b,c,d,e,x

Z xxx = a*x^2 + b*x + c + d/x + e/x^2

IF NOT x^-1=[Log(x)]

AND NOT x^n~=x^(n+1)/(n+1)

Id,Addfa,x

ENDIF

*end

Id,All,p,[N,]F[,"F][,"D][,"V]

Id,All,Fx,[N,]Fq

The command All (and its inverse Iall) has two different syntaxes. In
the first syntax, the first argument is a vector, which must have been declared
before. The list may be followed by optional character arguments "F_, "D_
or "V_ (always separated by commas, and possibly an index list, see below),
which inhibit certain actions.

In the second syntax, the first argument is a function, which must have
been declared before.

The parameters N and F must have been declared previously as algebraic
symbol (it must be a one character symbol) and function. The dimension
parameter N may be absent.

First syntax: If any occurrence of the vector p is found, the function F is
appended, with arguments that depend on the context in which p is found:

• If p(mu) with any index mu is found, then p is removed and the argument
mu is added to the argument list of F.

• If pDq is found with any q (except p) and a positive exponent, say pDq^n,
then q is added as an argument of F n times.

• If pDp is found with a positive power, say n, then n new indices are
created. Each index is added twice as an argument of F.

3. Description of Commands 65

• If p is found as the argument of any function, then an index is created.
The new index replaces p as the function argument, and furthermore the
index is added as an argument of F.

In the above, whenever an index is created it is given the symbolic dimen-
sion N, or the default dimension (=4) if no N is specified. The main use of this
command is to facilitate integration with the vector p as integration variable.

The optional character arguments inhibit actions as follows. If "F_ oc-
curs, no function arguments are inspected; "D_ inhibits the inspection of dot
products; "V_ turns off inspection for single vectors. In the example

Id,All,p,N,F,"F_,"V_

only dot products are considered.

Second syntax: All arguments of the function Fx are scanned. When a vector
argument is found, it is replaced by a created index. The function Fq gets two
new arguments, namely the vector and the created index. In the final result
the arguments of Fq are arranged with all the vectors first, followed by all the
corresponding indices. For example, All,Fx,N,Fq applied to Fx(p,k,q) gives
Fx(Naa,Nab,Nac)*Fq(p,k,q,Naa,Nab,Nac).

C Example 16.

V p,q

F F

I mu=N,nu=N

Z xx= pDp^2 * pDq^3 * F1(p,p,q,p) * p(mu) * q(nu)

Id,All,p,N,F

P output

*yep

C Showing the dimensionality of the created indices:

Id,F(i1~,i2~,i3~,i4~,i5~,i6~,i7~,i8~,i9~,i10~,i11~)=

F(i1,i2,i3,i6,i7,i8,i9,i10,i11)*D(i4,i5)

*begin

C A more realistic example.

I al,be,mu,nu

A N,N_

V p,k

F F,F20,F22

66 XII. Substitution Commands

Z xx = G(1,1,al,be,p,al,be,p)

Id,All,p,N,F

P output

*yep

Id,F(i1~,i2~) = D(i1,i2)*F20(k) + k(i1)*k(i2)*F22(k)

*end

It should be clear that the All command generally creates indices. Such
indices are often renamed by Schoonschip, in order to produce a well-defined
result in the output. Sometimes the renaming is undesirable; in particular a
subsequent Freeze command can give trouble if a created index occurs inFreeze

a pair, one outside and one inside a bracket. To handle such cases, one can
assign a list of indices to be used by the All command, after the last function
(and the possible V_, etc.). These indices must have been declared in the I

list, with the same dimension as that specified in the All command.

For example,

I al1=N,al2=N,al3=N

. . .
Id,All,p,N,Fx,D ,al1,al2,al3

It may be that more indices are needed than are given in the list. There are two
options here. In the above case, Schoonschip will issue an error message when
the list is exhausted. If instead the list is terminated with the character "C,

Id,All,p,N.Fx,D_,al1,al2,al3,"C

then Schoonschip will create further indices as they are needed, after using up
al1, al2, al3.

Id,Anti,TA

All function arguments are inspected for character arguments ("X). If a
character with underscore is found, the character table TA is consulted. If the
character appears in that table, the underscore is removed. This command
will be discussed further in Chapter XVI, Character Summation.

Id,Asymm,F1,2,3,4,F2,F3,4,5, . . .

The Asymm command specifies that F1 is antisymmetric in arguments 2, 3
and 4, F2 in all arguments, and F3 in arguments 4 and 5. If the arguments
are not in “first defined first” order, they are permuted. If the permutation
is odd, a minus sign is attached. If a number in the list is larger than the

3. Description of Commands 67

number of arguments in the function it follows, it is ignored. When Asymm is
used in a conditional, success is flagged when a permutation is actually done;
no permutation means failure.

There is a second syntax for this command that can be used when the
arguments occur in groups:

Id,Asymm,F1:2,3,4:7,8,9:12,13,14:

The groups of numbers within colons denote argument groups. They need not
to be sequential. Only the first argument of a group is used in the comparison.
If, however an interchange is needed, both groups are interchanged as a whole.
For example, if in the above case argument 7 is to be placed before argument
2, then 2 is interchanged with 7, 3 with 8 and 4 with 9.

If the arguments are sequential, an even shorter syntax is allowed:

Id,Asymm,F1:1-3:7-9:12-14:

The number of arguments in each group must of course be the same.

Note: For symmetric functions see the command Symme.

C Example 17.

V p,q,k

I mu

A a,b,c,d,e,f,g,h

F F1,F2,F3

Z xx = F1(e,d,c,b,a) + F2(e,d,c,b,a) + F3(e,d,c,b,a)

+ F2(-125,-30,-1,0,30,125)

+ F2(pDq,pDk,kDq,p(3),q(2),F2,7,mu,p,a)

+ f1(e,f,g,d,a,b,c,h,k)

Id,Asymm,F1,2,3,4,F2,F3,4,5

Al,Asymm,f1:1-3:5-7:

*end

Id,Beep,#

This command sends a ctrl g to the terminal, which normally results
in a beep. It may be used to audibly signal certain occurrences. Be careful
though; one quickly gets a lot of noise. The number # limits that—at most #
beeps will be issued. Here # must be positive and less than 128. Example:

68 XII. Substitution Commands

IF a^10

Al,Beep,3

ENDIF

The Beep statement (not this command) may be used to generate someBeep statement
noise upon termination, or if an error occurs.

IF Coef,option

The command Coef is specifically for use with conditional substitutions.
It essentially inspects the numerical coefficient of any term passing by. Of
course, this command can also be used with AND or OR, with or without a NOT.
The possible options are:Coef options

pl plus
ng negative
eq,# equal
lt,# less than
gt,# greater than
ib,#1,#2 in-between

Here # represents a number (any number, not just a short number). When
a term passes by, the coefficient is inspected or compared, and the IF bit is
set or cleared depending on the result. In the case of eq, two numbers areeq

considered equal if they agree within the number of decimal digits specified by
the Precision statement (default = 25). The correspondence between howPrecision

the IF bit is set and the naming of the options is the following:

IF Coef,option

{
yes set IF bit (or clear if IF NOT)
no clear IF bit (or set if IF NOT)

C Example 18.

A a1,a2,a3,a4,alt1,agt2,aeq15,ai12

Z xxx= 0.5*a1 + 1.5*a2 + 2.5*a3 + 1.E-20*a4

IF Coef,lt,1. !Add factor alt1 if coefficient < 1.

Id,Addfa,alt1

ENDIF

IF Coef,gt,2. !Add factor agt2 if coefficient > 1.

Id,Addfa,agt2

ENDIF

3. Description of Commands 69

IF Coef,eq,1.5 !Add factor aeq15 if coefficient = 1.5

Id,Addfa,aeq15

ENDIF

IF Coef,ib,1,2 !Add factor ai12 if coefficient

Id,Addfa,ai12 !in-between 1 and 2.

ENDIF

IF Coef,lt,1E-15 !Delete the term if coefficient

Id,Addfa,0 !< 1E-15.

ENDIF

*end

The last lines of this example show how the Coef command can be used
effectively to eliminate “dirt.”

Id,Commu,F1,F2,F3, . . .

The command Commu is used for ordering commuting functions. The or- commuting
functionsdering is done with respect to:

• the name of the function (smallest first, see Section 2 of this chapter)
• the number of arguments
• the arguments

If the commuting functions occur nested between other functions, they are
removed and placed after the other functions. Thus the Commu command may
have an effect even if only one function is named, and even if that function
occurs only once in a given term.

C Example 19.

A a1,a2,a3,a4,a5

F F1,F2,F3

Z xx = F3(a1,a2)*F1(a1,a2,a3)*F1(a4,a5)

+ F1(a1,a2,a4)*F2(a1,a2,a3)*F1(a1,a2,a3)

+ F3(a1,a4)*F2(a1,a2,a3)*F1(a1,a2,a4)*F2(a3,a4,a5)

Id,Commu,F1,F3

*end

The IF bit is set if any of the functions named is present.

70 XII. Substitution Commands

Id,Compo,["X,][TA,]<options>,F1,F2,<options>,F3,F4, . . .

The Compo command is quite complicated, and it is beyond the scope of
this manual to describe realistic applications. We nevertheless give a complete
description of the command itself. It does character manipulation, and can be
used to generate new symbols, including functions. There is a way to correlate
the name of a function created in this way with specified arguments. When
combined with the use of tables (tables can also have characters in their lists),Compo with tables
it is a powerful tool for generating large numbers of symbols, or functions as
well, that reflect a topology. For a very simple application, see Example 21,
which demonstrates the command Count.

The character argument "X may be absent, or it may be "S or "S_. The
character table argument TA may also be absent. If present, it specifies char-
acters for which "X_= "X (antiparticle = particle). If not present, the default
is either none, or characters defined by means of the Anti statement.Anti

Briefly, Compo takes the character arguments found in F1, etc., permutes
them into a well-defined order (unless "S_ is specfied for "X) and at the same
time permutes argument groups in F1. The characters are then glued together
to make a name, which may be identified with an existing name, or entered
into a name list if it doesn’t exist; or the term may be discarded, depending
on what options have been specified.

The functions F1, F2, . . . are scanned. The arguments are expected to
have the following structure:

F1(c1,c2,c3, . . . ,cn,/,d1,d2, . . . ,dm,*,arg1a,arg1b, . . . ,
,arg2a,arg2b, . . . ,,argka,argkb, . . .)

Here c1,. . . ,cn and d1,. . . ,dm are either characters prefixed by ", in which case
the legal characters are the upper and lower case characters and the numerals,character arguments
possibly followed by an underscore, or they may be vectors, in which case the
character(s) of the vector name without a " are used. Either n or m may be zero,
but not both. If m is zero, the / may be omitted. The arguments arg1a, arg1b,
etc., correspond to character c1; arg2a, arg2b, etc., to character c2; and so
on. The sum of n and m must not exceed 6 (not counting the underscores),
and must not exceed 2 if a vector name is to be constructed.

The characters c1, . . . , cn are subject to the ordering process, while d1,
. . . , dm are not.

As for the argument groups (arg1a,arg1b, . . .), (arg2a,arg2b, . . .), . . . ,
(argka,argkb, . . .) note the following:

• An argument group may be empty. That is denoted by two successive
*’s separated by a comma.

3. Description of Commands 71

• The number of argument groups may be less than the number of c-
characters (i.e., k less than n). In that case argument groups k+1, k+2, . . .
are considered to be empty.

• The number of argument groups may be larger than the number of c-
characters (i.e., k larger than n). Access groups are not considered in
the actions described below and are simply reproduced.

When it encounters such a function, Schoonschip inspects the characters
and permutes them according to the standard character ordering (A-Z, a-z, 0-9;
characters followed by an underscore are ordered just before the corresponding
character without underscore: A,B,C_,C etc.). The sets of arguments

arg1a,arg1b, . . . ,arg2a,arg2b, . . .

are permuted in tune with this. Thus if, for example, only c1 and c2 are
exchanged, the argument list will read:

,arg2a,arg2b, . . . ,,arg1a,arg1b, . . . ,*,arg3a, . . .

No permutation is done with respect to the characters d1, d2, . . .

No permutation is done if the character variable "S_ (no symmetrization)
is given in the Compo argument list.

Next, all characters are glued together, forming a name. The name is
searched for in the lists mentioned in <options>; if found, the name is identified Compo options
with the corresponding variable. If not found, what happens depends again
on the option specification. If a list is mentioned twice, then the new name is
added to that list and new occurrences will be identified with the new name.
If no list is specified twice in <options>, then the whole term is discarded.

In the option list, enclosed between < >, the characters X, A, F, V and I

may appear once, and the characters A, F, V and I may also appear twice.
Thus no new entries can be made to the list of X expressions, but the X table
(which also includes D and T expressions and files) can be searched. At most
one character can occur twice. There is a default option, <AXIVFA>, which
means: search all lists, and if not found insert in the algebraic symbol list.

After the name is identified, the corresponding symbol is forced to be the
first argument of the function, replacing all c- and d-characters and the op-
tional /. Then all *’s are removed. The result is a function which has the
constructed symbol as its first argument, and the arguments that follow are
whatever results from the permutations among the argument groups. In sub-
sequent substitutions one may work this function out to whatever is required.

72 XII. Substitution Commands

C Example 20.

F F1,F2

A a,b,c,d

Z xx = F1("c,"b,"a,/,"e,*,a1,a2)

+ F1("c,"b,"a,/,"e,*,a1,a2,*,xy)

+ F1("c,"b,"a,/,"e,*,a1,a2,*,xy,*,a2)

+ F1("c,"b,"a,/,"e,*,a1,a2,*,xy,*,b2,*,xz)

+ F2("a,"b,/,"F,*,x,*,y,*,z1)

+ F2("b,"a,/,"F,*,x,*,y,*,z1)

+ F2("F,"c,"b,"a,*,*,z,*,y,*,x)

+ F2("F,"c,"b,"a,*,*,z,*,yp,*,x)

Id,Compo,<AVIFXA>,F1,<FF>,F2

Id,Always,F2(F1~,a~,b~,c~,d~,e~) = F1(a,b,c)

Id,F1~(a~,b~,z1) = F1(a,b)

*begin

Notes: In the first group, F1, various possibilities for the number of argument
groups are demonstrated. The option specified for that in the Compo command
is actually the default option and could have been omitted. In the second
group, it is shown how various functions with arguments can be created, even
with different numbers of arguments. For that purpose the fake argument z1
is introduced in the first two cases. The function substitution for F2 works
no matter how many arguments are present, but one must take care that no
undefined quantities appear on the right-hand side. That means the function
F2 should not occur with fewer than three arguments. Unfortunately, it is not
possible to handle empty arguments here. The fake argument z1 is removed
in the last substitution.

Also note the use of dummies in the substitutions. For function dummies,function dummies
we use a function symbol defined in the F list (F1 in this case). Disaster may
result if this is not done. It is extremely difficult to analyze for all the possible
cases that may occur when such an error is made, many of which will lead to
cryptic, seemingly unrelated error messages.

Example 20 continues with a second part that shows the use of Compo to-
gether with tables. Although somewhat contrived, it shows the main ideas.
Suppose an electric circuit must be built up from four, 3-pole elements con-circuit example
nected by diodes, in the configuration shown:

3. Description of Commands 73

C Circuit diagram:

j1

i1 ---0-------0--- i3

j4 | |j2

| |

i2 ---0-------0--- i4

j3

The currents i1 and i2 are flowing inwards, i3 and i4 outwards; j1–j4 are
taken to flow clockwise. The 3-pole elements have three external connections
called A, B and C. The connecting elements are diodes, and the connections are
called B and C. The B of a diode may be connected to the B from a 3-pole, C
to the C of a 3-pole. One might think here of the emitter and collector of a
transistor. The main object is to generate all possible configurations, which is
very simple in this case—one may either have all the diodes oriented clockwise,
or all oriented counterclockwise. One also wants to exhibit the currents flowing
through the various objects. Once the expression involving all elements with
the currents is obtained explicitly, one can go ahead and work out whatever
else is wanted. If the connecting elements are for instance a diode, resistor and
battery in series, one can compute all currents as functions of the input/output
currents i1–i4; but we will leave that to the imagination of the reader.

In the example below the function v3 represents the 3-pole. The only
combination to be recognized is the combination ABC. Thus only the function
ABC is defined, and among the Compo options the F list is mentioned only once.
Things like AAB or ACC will then be thrown away. Below we simply sum over all
possibilities for the connecting lines (i.e., AA, BC and CB), leaving it to Compo to
keep only those combinations that contain exclusively the functions ABC and
BC.

A new feature in this example is the occurrence of characters in the lists
for the tables Ch and Cg. While not exhibited here, there is another facility
built-in. Normally one refers to a table element by means of the table name
followed by a number. One may also refer to table elements by means of the
table name followed by a character. Then the number associated with that
character (given above) is used to pick out the correct element. This is useful
if certain properties have to be associated with a character.

T Ch(n)="A,"B,"C

T Cg(n)="A,"C,"B

F BC,ABC

A i1,i2,i3,i4,j1,j2,j3,j4

Z solu = square("A,"A,"A,"A)

74 XII. Substitution Commands

Id,square(c1~,c2~,c3~,c4~) = DS{L1,1,3,(DS{L2,1,3,

(DS{L3,1,3,(DS{L4,1,3,(

v3(c1,Ch(L1),Cg(L4),*,i1,*,-j1,*,j4)*

con(Ch(L1),Cg(L1),*,j1,*,-j1)*

v3(c3,Cg(L1),Ch(L2),*,-i3,*,j1,*,-j2)*

con(Ch(L2),Cg(L2),*,j2,*,-j2)*

v3(c4,Cg(L2),Ch(L3),*,-i4,*,j2,*,-j3)*

con(Ch(L3),Cg(L3),*,j3,*,-j3)*

v3(c2,Cg(L3),Ch(L4),*,i2,*,j3,*,-j4)*

con(Ch(L4),Cg(L4),*,j4,*,-j4)

) }) }) }) }

Id,Compo,<F>,v3,con

Id,v3(f1~,a1~,a2~,a3~) = f1(a1,a2,a3)

Al,con(f1~,a1~,a2~) = f1(a1)

*end

Id,Count,xxx,arg1,#1,arg2,#2, . . .

The command Count has grown out of the need to have a facility that
selects terms on the basis of certain asymptotic properties. One may know how
various functions and other quantities behave as a function of some variable or
for certain limiting values of a variable, for example, the behavior as a function
of x for very large x. With Count one can, for instance, select terms thatselecting powers
behave at large x like xn, with n larger than some given number. That is the
most typical application. But the command allows many other possibilities.

In case xxx is a function or X expression, the format is:

Id,Count,Fx,arg1,#,arg2,#,. . . ,# :arg3,#,

. . . ,#: arg4,#,. . .

The colons separate groups of arguments.

As an option, function names preceded by "F may be given directly after
the first argument of Count or after the colons, if any:

Id,Count,Fx,"F,Fy,"F,Fz,arg1,#,arg2,#,

. . . ,# :"F,Fc,arg3,#,. . . ,#. . .

In the template above, arg1, arg2, etc., may be indices, vectors, algebraic
symbols or functions. What happens when a term is first scanned is that a
number called the count is constructed, which is a sum of counts resulting from
individual factors. The count for an individual factor is the exponent of that
factor (if applicable), multiplied by the number following the corresponding
argument in the Count list. Thus if x,7 occurs in the Count list, then x^3 in

3. Description of Commands 75

a term contributes 21 to the count being constructed. If there is no exponent
(as would be the case for a function or vector) the number from the list is
added in once. The contributions of vector components or dot products are
computed on the basis of the values assigned to the corresponding vectors in
the list. Thus p,2,q,5 leads to 21 for pDq^3 and 10 for q(3)^2. Function
arguments and vector indices are ignored in constructing the count. However,
function arguments of functions specified with the "F option are counted as
single occurrences. Thus, the statement

Id,Count,xxx,"F,Fa,a,35,b,1

leads to a count of 38 for the term b^2*Fa(a,b,c).

What happens next depends on what occurs as the first argument in the
Count list (i.e., xxx above):

• If xxx is a number, then the count is compared to xxx. If the count
is greater than or equal to xxx, the term is kept, otherwise the term is
deleted.

• If xxx is an algebraic symbol, vector component or dot product, then
the count becomes the exponent of that quantity, and the combination
is attached to the term.

• If xxx is a function or X expression, then the count becomes the argument
of that function or X expression, and the combination is attached to the
term.

Multiple counts can also be made. The occurrence of a colon (:) in the
count list signals that subsequent counts must be put in subsequent function
arguments. Thus, if two colons occur, a three-argument function is created.
The list up to the first colon is used to compute the value of the first argument,
the argument list between first and second colon determines the value of the
second argument, etc.

As an example, consider the term

a^3*b^2*pDk

with vectors p and k. The command

Id,Count,Fc,a,1,b,2 : p,2,k,3

(Fc having been declared before as a function) generates a two-argument func-
tion Fc:

Fc(7,5)*a^3*b^2*pDk

76 XII. Substitution Commands

The fact that Fc may also be an X or D expression allows for very compact
but quite complicated counting. If Fc is a nonnumeric X or D expression,
then several substitution levels are possibly needed to work out the result;
and Schoonschip does not automatically take that into account. For purely
numeric X and D expressions, only one level is needed. To ensure proper level
spacing in case of a nonnumeric Fc, write a dummy substitution involving Fc

directly before the Count command, and use Al for the Count command:

Id,XxxX=Fc

Al,Count,Fc,a,1,b,2 : p,2,k,3

where XxxX does not occur anywhere else.

In the following example we not only demonstrate Count, but also show
another application of Compo. The coefficients a1-a5 are constructed and en-Compo

tered into the A list (remember that Compo has the default options <AFVIXA>).Keep
The use of Keep and *next is shown as well.*next

C Example 21.

A x,y

T tt(n) = "1,"2,"3,"4,"5

C Here is a complicated way to make

C pow(x) = a1*x + a2*x^2 + a3*x^3 + a4*x^4 + a5*x^5.

Z pow(x) = DS(J,1,5,{f1(/,"a,tt(J))*x^J})

Id,Compo,f1

Id,f1(y~) = y

Keep pow

*next

Z xx = pow(x)

Id,Count,3,x,1

Keep pow

*next

Z xx = pow(y)

Id,Count,f1,y,2,a3,10

Keep pow

*next

3. Description of Commands 77

V p,q

A AA

Z xx = pow(y)*f1(a2,a3)*pDq^2

Id,Count,AA,y,2,f1,-4,p,1,q,3

*end

Id,Cyclic,F1,2,3,4,F2,F3,4,5, . . .

Id,Symme,F1,2,3,4,F2,F3,4,5, . . .

The commands Cyclic and Symme are analogous to Asymm, except that
invariance under the cyclic permutation or simple exchange of arguments is
implied.

For the command Symme, alternative syntaxes can be used to denote groups
of arguments:

Id,Symme,F1:2,3,4:7,8,9:12,13,14:

Id,Symme,F1:1-3:7-9:12-14:

In the case of Cyclic, the arguments are permuted following the pattern
specified in the Cyclic list, which can make things pretty obscure, as the
following example shows. The arguments are permuted to achieve the or-
der “smallest first.” As with Asymm, success in a conditional results when a
permutation is done, while no permutation means failure.

C Example 22.

A a,b,c,d,e

Z xxx = f1(e,d,c,b,a) + f2(e,d,c,b,a) + f3(e,d,c,b,a)

Id,Cyclic,f1,2,5,4

Id,Symme,f2,f3,2,3,4

*end

Id,Dostop,on

Id,Dostop,off

Id,Dostop

IF Dostop

The command Dostop may be used to set, clear or test the do-loop forced
exit flag. If the flag is set, then the next ENDDO encountered is taken to be

78 XII. Substitution Commands

satisfied. This command can be used to execute a set of substitutions and
commands followed by a *yep repeatedly until some condition is satisfied.

Here is a typical example:

Z xx = a^10

DO J=1,100

Dostop off

Id,a1^n~=a1^(n-1)*b

IF NOT a1

..Id,Dostop,on

ENDIF

*yep

ENDDO

*end

The do-loop sequence will be re-executed 100 times, or until a1 is no longer
present. In the case shown, the cycle is run 10 times, and the result is b^10.
Note that:

• the Dostop statement and command are within the same program seg-
ment (i.e., there is no line with a * in-between);

• the last line of the do-sequence contains a * in column 1.

Refer to the remarks on the Dostop statement in Chapter III, Input Facilities,
for more details.

The Dostop command may also have off, or nothing as a parameter:

Id,Dostop,off

Id,Dostop

In the latter case the Dostop flag is tested, but not modified. The test mode
may be used in conjunction with an IF:

IF Dostop
. . .

ENDIF

A set flag corresponds to “yes.”

Id,Epfred

The command Epfred causes the reduction of products of Epf with equal
numbers of arguments into D’s and at most a single Epf.

The simplest case is that of two arguments:

3. Description of Commands 79

Epf(i1,i2)*Epf(i3,i4) = D(i1,i3)*D(i2,i4)

- D(i1,i4)*D(i2,i3)

In three dimensions this is the equation that rewrites the product of two cross
products in terms of dot products. If p, q and k are vectors, then the pseu-
doscalar k · p × q is given by Epf(k,p,q). If pp, qp and kp are also vectors,
then the product (k · p × q)(kp · pp × qp) can be rewritten in terms of dot
products. Similar relations hold in higher dimensions.

Note: The product of two Epf’s of different dimension is not reduced.

C Example 23.

V p,q,k,pp,qp,kp

Z xxx = Epf(k,p,q)*Epf(kp,pp,qp)

+ Epf(i1,i2,i3,i4)*Epf(i1,i2,j3,j4)

Id,Epfred

*end

Id,Even,F1,2,3,4,F2,F3,4,5, . . .

Id,Odd,F1,2,3,4,F2,F3,4,5, . . .

The commands Even and Odd specify that certain functions are even or odd
with respect to a change of sign of certain arguments. Minus signs in front of
such arguments are removed.

C Example 24.

F f1,f2,f3,f4

Z xxx = f1(-a1,-a2,a3,-a4) + f2(-a1,-a2,a3,-a4)

+ f3(-a1,-a2,a3,-a4) + f4(-a1,-a2,a3,-a4)

Id,Even,f1,2,3,f2

Id,Odd,f3,2,3,f4

*end

Id,Expand,fname

The command Expand occurs in combination with frozen files. See Chap- Freeze

ter XIX, Handling Large Problems. In the syntax template above, fname is
the name of a frozen file. All frozen subfiles referred to through the function
DF are expanded.

80 XII. Substitution Commands

Id,Extern,arg1,arg2, . . .

The command Extern allows one to enter external routines as an integral
part of Schoonschip. First one needs the statement External:External

External filename

which loads the external file filename into Schoonschip’s work space. At ex-
ecution time, the Extern command causes a jump to the first location loaded
from the file, whereupon manipulations can be performed on expressions, if
the file contains position-independent, executable code. That requires an un-
derstanding of the internal formats used by Schoonschip, and presupposes the
ability to generate such a file.

The Schoonschip interface provides access to all arrays, and also to internal
utilities such as print routines, etc. That information is not contained in
this manual, but is available elsewhere. Roughly speaking, a whole series of
addresses is passed as a structure on the stack. The arguments are passed in
the form of an array.

In principle this facility allows the creation of special packages for specific
problems.

Id,Gammas,loop indices plus options,Trace,loop indices plus options

This command will be discussed in Chapter XVII, Gamma Algebra.

Id,Iall,p,F

Id,Iall,F

These commands are the inverse of All for the two possible syntaxes. Do
not use Iall if the indices that occur as arguments have dimensional restric-
tions (Dim_N or Dim_4), such as can arise in the process of doing gamma algebra
with the Gammas command. The command Ndotpr is to be used in such cases.

Id,Ndotpr,F1

The Ndotpr command is closely related to the Gammas command and is
discussed in Chapter XVII, Gamma Algebra.

Id,Numer,arg1,#1,arg2,#2, . . .

The command Numer can be used to insert numerical values for certain
quantities. The numbers in the command template above need not be short
numbers, they can be anything. Function arguments are not considered. The
arguments may be algebraic symbols, vector components or dot products. In
a conditional, success results if any of the quantities in the list is present,
otherwise the result is failure.

3. Description of Commands 81

C Example 25.

V p,q

Z xxx = a1^2*pDq^3/p(4)

Id,Numer,a1,2,pDq,1.E10,p(4),1.E5

*end

Id,Order,F1,F2, . . .

Id,Order,"C,F1,F2, . . .

Id,Order,#,F1,F2, . . .

Id,Order,#,"C,F1,F2, . . .

In the first template above, the Order command searches for the functions
F1, F2, . . . and builds chains of factors, one chain for each function in the list,
on the basis of the first two arguments of the functions, which act as indices
that link elements of a chain. First the function F1 is sought. Its second
argument is then looked for as the first argument in other F1 factors. If found,
the new F1 factor is chained to the previous, etc. The same is done with F2,
etc.

Only one index is kept in the factors in the collected F1 chain, namely, the
first one found; and similarly for F2, etc.

This index scheme is used in a new (to this version of Schoonschip) gamma
matrix notation for keeping track of loops, described in Chapter XV and Chap-
ter XVII, Particle Physics and Gamma Algebra.

The other templates correspond to additional options for the Order com- Order options
mand. The second template, with the character "C (for collect) as the first
command argument, causes the collection of all of the arguments of the factors
in a chain, except for the first two index arguments, into the arguments of a
single function for the chain.

The third and fourth templates, with the number # as the first command
argument, cause # to be inserted as the first function argument (in case it is
nonzero) for each of the collected factors of the F1 chain, #+1 to be inserted for
the F2 chain, etc. The option "C is combined with this in the fourth template,
which collapses each chain into a single function with many arguments, but
each with a single index as first argument, #, #+1, etc. If # = 0, the first
argument is omitted; no index is kept, whether "C is present or not.

82 XII. Substitution Commands

Here are some single chain examples, including the output:

Z x1 = Faa(4,5,ddd)*Faa(2,3,bbb)*Faa(1,2,aaa)*Faa(3,4,ccc)

Id,Order,Faa

x1 = + Faa(1,aaa)*Faa(1,bbb)*Faa(1,ccc)*Faa(1,ddd) + 0.

Z x1 = Faa(4,5,ddd)*Faa(2,3,bbb)*Faa(1,2,aaa)*Faa(3,4,ccc)

Id,Order,"C,Faa

x1 = + Faa(1,aaa,bbb,ccc,ddd) + 0.

Z x1 = Faa(4,5,ddd)*Faa(2,3,bbb)*Faa(1,2,aaa)*Faa(3,4,ccc)

Id,Order,90,Faa

x1 = + Faa(90,aaa)*Faa(90,bbb)*Faa(90,ccc)*Faa(90,ddd) + 0.

Z x1 = Faa(4,5,ddd)*Faa(2,3,bbb)*Faa(1,2,aaa)*Faa(3,4,ccc)

Id,Order,90,"C,Faa

x1 = + Faa(90,aaa,bbb,ccc,ddd) + 0.

Z x1 = Faa(4,5,ddd)*Faa(2,3,bbb)*Faa(1,2,aaa)*Faa(3,4,ccc)

Id,Order,0,Faa

x1 = + Faa(aaa)*Faa(bbb)*Faa(ccc)*Faa(ddd) + 0.

Z x1 = Faa(4,5,ddd)*Faa(2,3,bbb)*Faa(1,2,aaa)*Faa(3,4,ccc)

Id,Order,0,"C,Faa

x1 = + Faa(aaa,bbb,ccc,ddd) + 0.

Id,Print,#,message

This command is used to print a message to the standard output at exe-
cution time. Here # limits the number of times the message is printed. Every-
thing after the third comma, including blanks through the end of the line, is
printed when this command is encountered at execution time. For example:

Id,2,Print, Hello world.

The message “ Hello world.” is printed at most twice.

3. Description of Commands 83

Id,Ratio,a1,a2,a3

The command Ratio is designed specifically to facilitate integrations. It
is used to rationalize a product of factors that are linear in the integration
variable. The simplest case is:

1/(x+a) * 1/(x+b) = {1/(x+a) - 1/(x+b)}/(b-a)

Since expressions in Schoonschip cannot have negative exponents (except when negative exponents
they are purely numerical), one cannot write such things directly. The way to
handle that is to introduce symbols for expressions that appear with negative
exponents, for example, xpa = x+a. Then the equation becomes:

xpa^-1*xpb^-1 = {xpa^-1 - xpb^-1}*bma^-1

Here the [] notation for symbols is very convenient. One may write: square brackets

[x+a]^-1 * [x+b]^-1 = {[x+a]^-1 - [x+b]^-1}/[b-a]

If the exponents are large this becomes quite complicated, and that is where
Ratio comes in. In the command one must specify the two factors and their
difference; in the case mentioned above, one would write:

Id,Ratio,[x+a],[x+b],[b-a]

Ratio works for all exponents that can occur, whether positive or negative.

C Example 26.

A a1,a2,a2ma1

F f1

B b2,b3,b4,b5

Z xx=f1(8,4)

Id,f1(n~,m~)=

{ b2*a1^n*a2^m

+ b3*a1^-n*a2^m

+ b4*a1^n*a2^-m

+ b5*a1^-n*a2^-m

}

Id,Ratio,a1,a2,a2ma1

*begin

C Here the use of Ratio with [] names.

B [b-a]

84 XII. Substitution Commands

Z xxx = 1/[x+a]^3 * 1/[x+b]^2

Id,Ratio,[x+a],[x+b],[b-a]

P output

*yep

C Just checking...

Id,[x+a]^n~ = (x+a)^(3+n)*(x+b)^2/[x+a]^3/[x+b]^2

Al,[x+b]^n~ = (x+a)^3*(x+b)^(2+n)/[x+a]^3/[x+b]^2

Id,b = [b-a] + a

*end

While the first two arguments following Ratio must be symbolic, the thirdshort difference
can also be a short number, -128 to 127 (not an expression).

Id,Spin,loop indices or momenta

This command is discussed in Chapter XV and Chapter XVII, Particle
Physics and Gamma Algebra.

Id,Stats,#

The Stats command provides statistics. The counts are printed at the
conclusion of a section delimited by a * line. Four counts may be kept, specified
by the number #, which may be absent, implying 0, or one of the numbers 1, 2
or 3. No error message is given if the number exceeds 3 or is negative; Schoon-
schip takes the number modulo 4. Every time this command executes, 1 is
added to the appropiate count. Example:

IF a^3

Id,Stats,2

ENDIF

This construction counts the number of terms with a^3. The result is printed
at termination.

Chapter XIII

Conditional Input

Conditional input statements may be used to formulate small variations on
a given problem. The idea is to define parameters near the beginning of a
problem, and to read the input program text as a function of those parameters.
Many variations on a given problem can then be run by simply changing a few
parameters in the beginning.

The parameters are called _Sw0, . . . , _Sw9, and their default values are conditional
parameterszero. The parameter _Sw0 is special because its initial value can actually be

set on the command line when Schoonschip is invoked. The command line command line
notation for that is S=#, where # must be a number in the byte range -128 to
127. For example:

Schip S=7 Ifile

The initial value of _Sw0 will then be 7.

The _Swx’s may be changed by means of a Set statement. The syntax is Set

the following:

Set _Swx = expr

with x a number 0, . . . ,9, and expr an essentially numerical expression with
value in the byte range (-128, 127). For example:

Set _Sw3 = 7

Every occurrence of _Sw3 is then replaced by the number 7. That includes
occurrences within an expression; for example,

. . . a^_Sw3 . . .

is read as a^7. Another example:

Set _Sw5 = _Sw5 + 1

85

86 XIII. Conditional Input

The variables _Sw0, . . . , _Sw9 may also occur in a Gotoif (or Gotoifn)Gotoif
Gotoifn statement. Here is the syntax:

Gotoif expr, expr1 ? expr2

The expressions expr, expr1 and expr2 must be simple numerical expressions
which evaluate to numbers. Expr must evaluate to a number in the range 0
to 99. The other two expressions must evalute to 16-bit numbers in the range
−32768 to 32767. The question mark ? may be >, < or =. The expressions
are compared and if the condition is true all following lines are skipped until
a line with an @ symbol in column 1 occurs. The @ symbol may be followed by
a number, and if this number is equal to the value of expr the skipping stops,
else it continues. If there is no number after the @ symbol, the skipping stops
unconditionally.

The statement

Gotoifn expr, expr1 ? expr2

is analagous to the above, except that skipping occurs when the condition is
false.

Finally,Goto

Goto expr

causes an unconditional skip.

The expressions may contain numbers separated by the operators +, -, |, &,expressions
* and /. The operator | stands for the logical or and & is the logical and. Thelogical operators
precedence for the arithmetic operators +, etc., is as usual, and | has the same
precedence as +, & the same as *. Division is integer division; for example,
3/2 equals 1. Furthermore the variables _Sw0, . . . , _Sw9 are considered to be
numbers with the value to which they have been set (initially zero).

Here is a simple example, which also shows the use of the Synonym state-Synonym

ment:

Synonym Xxx = Sw0

Set Sw9 = 3

Set Sw1 = 2-3*(22/2-4)

Set Sw2 = 2-(22&2-4)* Sw9

Set Sw3 = 6

Set Sw4 = 1 | 0x20

Z xx = (a + b)^3 + a0^’Xxx’ + a1^ Sw1 + a2^ Sw2 + a3^ Sw3

+ a4* Sw4

XIII. Conditional Input 87

Gotoif 20, Sw3 > 5

Id, b = 20*c

Goto 21

@20

Id,b = a + c

@21

*begin

Here is the output in case the value 62 was specified as the initial value for
_Sw0 from the command line, Schip S=62 . . . If no S=# parameter had been
present on the command line, the value of _Sw0 would have been 0, giving 1

instead of a0^62.

xx = a0^62 + a1^-19 + a2^8 + a3^6 + 3*a4 + 6*a*c^2

+ 12*a^2*c + 8*a^3 + c^3

Note the notation for a hexadecimal number, 0x20 (= 32 decimal). An
or with 1 produces 0x21, i.e., 33 decimal. The and of 2 with 22 is 2 (in
hexadecimal 22 = 0x16, which gives 0x02 when and’ed with 0x02).

In the above case, since the condition is true, skipping starts immediately
after the Gotoif statement, and continues until the line with @20 is met. Thus
the problem reads:

Z xx = (a + b)^3 + . . .

Id,b = a + c

*begin

If _Sw3 is not set, or is set to some value equal to or less than 5, the problem
will be read as

Z xx = (a + b)^3 + . . .

Id, b = 20*c

*begin

The use of

Gotoifn 20, _Sw3 < 6

instead of the earlier Gotoif statement would give the same results.

Lines with an @ in column 1 are ignored when there is no skipping.

Chapter XIV

Internal Procedures

Some insight into the inner workings of Schoonschip is indispensible, and it
is the aim of this chapter to provide that. Although not reproduced here,
Example 28, continued in Example 29, also illustrates some of the essentials
by showing how to attack a problem that could easily explode if not approached
carefully.

1. Levels

Consider the expression:

Z XX = (a*x^2 + b*x)*dx

The process begins with the reading of the input, which is encoded and placed
into memory. Names are placed in arrays. The encoding stops when a * line is
reached. At this point, Schoonschip starts working out the Z expressions, one
after the other. This happens at Level 0. At Level 1, one term after another
passes by. In the case above, the first term to pass by is a*x^2*dx. No new
term is emitted until that term has passed 40 levels, and at each level the user levels
has an opportunity to work on it. When the term is finally collected in the
output store, the next term is issued, b*x*dx in our case. The output store output store
is a large area of more than 40 kilobytes; provisions for handling its overflow
are discussed in Chapter XIX, Handling Large Problems, and Appendix A,
Command Line Options.

The advantage of this procedure is that virtually no storage is needed for
intermediate results. Symbolic programs often work out an entire expression
before going on to the next level. One then finds the expression, transformed
at the first level, inside the initial expression, and so on. The same expression

89

90 XIV. Internal Procedures

in various stages of processing occurs many times in memory. That leads very
quickly to unmanageable memory overflow.

On the other hand, a substantial reduction in the number of terms may take
place when they are collected in the output store. To take a trivial example,collecting terms
the initial expression (a+b)^2 leads to 4 terms; and each of these 4 terms goes
through all 40 levels (actually Schoonschip notes how many levels are active,
and skips the empty levels). If one were to collect these terms immediately
after the first level there would then be only 3 terms: a^2 + 2*a*b + b^2.
That is what happens at the output store: like terms are recognized and the
coefficients are added, rather than keeping the terms separately (here that
applies to a*b). Thus collecting terms leads in general to a reduction in their
number, which in fact is often very substantial.

This was of course realized early on; and an option was included to collect
terms at any time, in the midst of substitutions and commands. That is *yep.*yep

When Schoonschip finds a *yep line, it processes all substitutions up to that
point, and then collects all terms in the output store. Next, the output store
is emptied to the disk; and then it is read in again, term by term. Each term
again passes through all the levels, possibly to another *yep, until all of the
substitutions in the next set are exhausted. It is up to the user to place *yep

lines judiciously when faced with a large problem.

As may be clear from the above, this procedure has the added advantage
that after a *yep the full 40 levels can be used again. There is thus basically
no limit on the number of substitutions and commands that can be done.

The assignment of substitutions and commands to levels is essentially au-level options
tomatic, but the user has a number of options. A substitution with Id isId
assigned to the next level; with Al, it is put on the same level, except forAl
a special situation described further below. Thus substitutions that do not
interfere with each other can be put on the same level: the first with Id, the
rest with Al. One may also want to have a substitution done at a number of
consecutive levels. In such a case one simply places a number after the Id or
Al. Thus, Id,7, . . . causes the corresponding substitution to be attempted
on 7 consecutive levels.

A special situation occurs when the command following Id uses more than
one level. When such a command is followed by Al, the Al substitution acts
at the last level used by the Id command, instead of at the first level it uses.

Upon reading the input, Schoonschip prints the corresponding level at thelevel printout
beginning of the line. To understand the numbering, one must realize that
working out brackets requires levels, one per level of nesting. Thus in the
last example, the first substitution is put at Level 2, because Level 1 is used
to work out the brackets. In fact, working out a bracket is very much like

2. Problem Size 91

a substitution; the initial expression is translated to something like $AAA^2,
where $AAA is a symbol invented for that purpose; and the substitution

Id,$AAA = a+b

is placed at Level 1. For that reason the $ symbol must not be used in names. $

This process may be seen in detail by using a P brackets statement to print P brackets

the $ expressions. X expressions may also require levels; they are like built-in X expression levels
substitutions. As soon as an X expression materializes at a level, Schoonschip
substitutes its definition.

It may help to make the whole process clearer if we reproduce the con-
tents of memory for a simple case, somewhere in the middle of a calculation.
Consider:

Z xxx = (a*x + b)*dx

Id,x*dx = (x2^2 - x1^2)/2

*end

At a certain point, the following may be found in memory: levels example

Level 0: $AAA*dx

Level 1: dx and a*x + b

Level 2: dx*a*x

Level 3: a and $AAB/2

Level 4: 0.5*a and x2^2 - x1^2

Level 5: -0.5*a*x1^2

Levels 6-40: skipped
In output store: 0.5*a*x2^2

The action at this point is at Level 5. A little later the term -0.5*a*x1^2 will
arrive at the output store, and that exhausts the work at Level 4. Schoonschip
then goes back to Level 1 and produces the next term, b*dx. After that has
passed to the output store (for simplicity we have not included the substitution
to integrate this term) Schoonschip goes all the way back to Level 0, finds that
the problem is done, and goes on to the next stage, namely, the printing of
the contents of the output store.

2. Problem Size

This rather complicated procedure has the great advantage that very little
memory is used at any one time. One finds bits and pieces from Level 0 all the

92 XIV. Internal Procedures

way down to the output store, and Schoonschip keeps climbing up and down
all the levels until all the work is exhausted at every level. To deal with large
problems, one must have some understanding of this procedure in order to
organize the calculation in the most efficient way. Any substitution with more
than one term on the right-hand side leads to a multiplication of the number
of terms generated, by some factor which depends on how many terms occur
on the right-hand side, and also on how often the substitution is actually done.

To see how much work Schoonschip does, use the statement P stats. ThenP stats

some statistics are printed, of which the most interesting in this context are
the number of multiplications and the number of terms. One multiplicationmultiplications and

terms is counted for every 2 terms (not factors) that are multiplied together. Thus
(a*x + b)*(c*x + d) yields 4 multiplications. Often the count comes out
higher than one might expect, due for instance to the way brackets are worked
out. The number of terms is simply a count of the terms that arrive at the
output store. That would be 4 in this case.

Another example: (a+b)^4 leads to 24 = 16 multiplications, and then to
16 terms; and after sorting in the output store one will have 5 terms. In actual
fact, the count for multiplications comes to 81 in this case, but we shall not
bore the reader with the details. Mainly, that is because Schoonschip begins
by setting a 1 before getting to the actual expression.

In practice the number of terms or of multiplications is a good indicator
of the complexity of a problem, and the time needed is roughly proportional
to those numbers. For large expressions with many terms, most of the time islarge problems
spent sorting the terms in the output store. Try to avoid more than 100,000
terms. If one gets into this kind of situation, it becomes necessary to examine
the organization of the problem in detail, and its separation into parts by
means of *yep. Chapter XIX and Chapter XX, Handling Large Problems and*yep

File Handling Commands, should also be consulted.

The largest calculation known to the author involved as many as 1,000,000
terms, but it is not known how much disk space was used. The present version
of Schoonschip needs about 20 seconds for 10,000 terms or 100,000 multiplica-times for

multiplications and
terms

tions (8 MHz M68000), but this must be seen as a very rough, low estimate.
Times may increase drastically where writing to disk is involved. The calcu-
lation just mentioned required 20 minutes on a cdc 7600, counting cpu time
only, not actual time. The same calculation would probably take many hours
on an M68000, assuming the availability of disk space. It is an important
point that there is at least no limitation due to Schoonschip itself, that given
enough time and disk space it will work its way through. The P stats state-P stats

ment prints statistics for every 8,192 (= 213) terms that pass through, so that
one can see some action.

2. Problem Size 93

In particular, a series expansion where the argument of the expansion is power series
another series can very easily lead to an enormous number of terms. Suppose
some function f(y) is given as a series expansion in y, and suppose that y is
also a series expansion in the variable x. Now suppose that the series expansion
of f in powers of x through x10 is to be found. If y is a polynomial including
powers up to x9, thus 10 terms, substitution into y10 yields 1010 terms. That
would take roughly 20 × 106 seconds ≈ 5, 600 hours, if nothing else were to
grow out of bounds and stop the calculation. Such problems really must be
worked out carefully. In Examples 28 and 29 we have reproduced a substantial
part of such a problem, enough to explain the principle involved.

Chapter XV

Particle Physics

Schoonschip has a few built-in facilities that are particularly useful for particle
physics. We refer to gamma matrix algebra and traces of products of gamma
matrices.

The special functions G, Gi, G5, G6, G7, Ug and Ubg are reserved to denote built-in functions
gamma matrices and spinors. Since more than one loop of gamma matrices can gamma matrices

spinorsoccur in a given calculation, all of these functions have a loop index. Gamma’s
with different loop indices are supposed to commute. The correspondence
between the old Schoonschip notation and the standard physics notation for
these quantities is the following: old notation

G(L,mu) gamma matrix with index mu of loop L

Gi(L) the identity matrix of loop L

G5(L) = G(L,1)*G(L,2)*G(L,3)*G(L,4)

G6(L) = Gi(L) + G5(L)

G7(L) = Gi(L) - G5(L)

Ug(L,m,p) spinor loop L, particle mass m, momentum p, spin 1/2
Ubg(L,m,p) Conjg{Ug(L,m,p)}*G(L,4)

Ug(L,mu,m,p) spin 3/2 spinor
Ubg(L,mu,m,p) Conjg{Ug(L,mu,m,p)}*G(L,4)

A new notation for gamma matrices has been introduced in the present
version (January 1, 1989) of Schoonschip. The above notation is still accepted,
but the new notation is more flexible, and we use it in this manual.

In the new notation, gammas have two loop indices. They may also have new notation
more than one vector index. The order of these two-index gammas is imma-
terial; at some point, when tracing or spin summation or whatever is done,
(usually with the command Gammas), the gammas are chained on the basis of Gammas

the two loop indices. Example:

95

96 XV. Particle Physics

Ug(i3,M,q)*G(i1,i2,mu)*G6(i0,i1)*Ubg(i0,m,p)

*G(i2,i3,nu,al)

This will be chained into one gamma string (called a G-string in the following):G-strings

Ubg(i0,m,p)*G(i0,"s,"6,mu,nu,al)*Ug(i0,M,q)

equivalent to the old sequence

Ubg(i0,m,p)*G6(i0)*G(i0,mu)*G(i0,nu)*G(i0,al)

*Ug(i0,M,q)

This takes the pain out of the process of ordering the gammas. Within
G-strings, "4, "5, "6, and "7 stand for Gi, G5, G6 and G7.

An antiparticle spinor may be represented as a particle spinor with -mantiparticle spinor
instead of m.

The G’s satisfy the rule:anticommutation
rule

G(L,"s,"4, . . . ,mu,nu, . . .) = - G(L,"s,"4, . . . ,nu,mu,. . .)
+ 2*D(mu,nu)*G(L,"s,"4, . . . , . . .)

which is the usual anticommutation rule.

Schoonschip treats all G’s as imaginary, corresponding to a hermitean set.gamma conjugation
Under complex conjugation, the order of the G’s is reversed (i.e., the order in-
side a G-string is reversed). G5 is imaginary, G6 and G7 are complex conjugates
of each other.

The commands Gammas and Spin allow for the reduction of a product ofGammas
Spin G’s to at most two G’s, the taking of traces, and spin summation. The built-

in equations can handle 4-dimensional and n-dimensional situations, with orn-dimensional
gammas without G5’s.

The command

Id,Spin,L1,p, . . .

does spin summation. Schoonschip looks for pairs of spinors Ug and Ubg withSpin

the same arguments except for the loop index (one of the loop indices must
be mentioned in the list), and replaces such pairs by the appropriate combina-
tion. A vector rather than a loop index may also serve as identification. The
command

Id,Spin,p

or

Id,Spin,L1

XV. Particle Physics 97

replaces the expression

Ug(L1,m,p)*Ubg(K1,m,p)

by

- i*G(L1,K1,p) + m*Gi(L1,K1)

Similarly for spin 3/2 spinors: spin 3/2

Ug(L1,mu,m,p)*Ubg(K1,nu,m,p)

is replaced by

{ D(mu,nu) - 1/3*i*G(L1,K1,mu)*p(nu)/m

+ 1/3*i*G(L1,K1,nu)*p(mu)/m - 1/3*G(L1,K1,mu,nu)

+ 2/3*Gi(L1,K1)*p(mu)*p(nu)/m^2 }

* { - i*G(L1,K1,p) + m*Gi(L1,K1) }

Chapter XVII, Gamma Algebra, explains how to use the Gammas command
to manipulate G-strings.

Example 27 gives the complete calculation for muon decay in the V-A muon decay
theory. It is not reproduced here.

The Compo command is very useful for calculating diagrams. The possible Compo

vertices can be given in terms of X expressions. For a given topology one sums
over all possible propagators. Separate examples exist for such cases, and are
available elsewhere.

Chapter XVI

Character Summation

Characters have become quite useful in Schoonschip for generating diagrams.
Typically one character is associated with each particle in the theory. The same particles and

antiparticlescharacter appended with an underscore (_) corresponds to the antiparticle.
There is a way to let Schoonschip know when a particle is its own antiparticle.

1. Vertices and Propagators

To generate diagrams one first needs a list of vertices. The name for a vertex is vertices
composed of the characters that correspond to the particles entering the vertex.
The characters in the vertex name must be ordered in a well-defined way: vertex names
alphabetically, with upper case before lower case before numbers, and with
characters having an underscore before those without an underscore. Thus,
A_AB_BC_C . . . Z_Za_ab_b . . . 1_12_2 . . . Here are some examples:

AWW Aww U_U AG_G Ue_e Ubt_ U_b_t U

Vertices have indices and momenta as parameters. Four-particle vertices have
no momentum dependence.

The list of vertices must be given in terms of X expressions. Each vertex
must have sufficient parameters to cover all cases. For a given particle, one vertex parameters
may have momentum, a vector index and a spinor index. Even if the vector
and spinor indices do not normally occur simultaneously, both need to be
carried along. A 3-vertex will thus have 9 parameters.

Here are some examples, the first of which is a vertex for three vector
particles:

99

100 XVI. Character Summation

X U_UW(AL,al,P,BE,be,Q,GA,ga,K)

= C*D(AL,BE)*(Q(GA)-P(GA)) + C*D(AL,GA)*(P(BE)-K(BE))

+ C*D(BE,GA)*(K(AL)-Q(AL))

The spinor indices al, be and ga are not used.

Here are two spinor vertices:

X Ubt_(AL,al,P,BE,be,Q,GA,ga,k)

= i*G(ga,be,AL) + avc*i*G(ga,be,AL,G5)

X Ue1_(AL,al,P,BE,be,Q,GA,ga,k) = i*G(ga,be,AL,G6)

Note that spinor indices usually appear in reverse order. This is the vertex
for a vector particle (charged W) coupled to a fermion and an antifermion
(bottom and top quarks or electron-neutrino).

Here is a fermion propagator:propagators

X t_t(L1,l1,L2,l2,K) = NOM(K,Mt)*G(l2,l1,K)

+ NOM(K,Mt)*Gi(l2,l1)*Mt

NOM is the usual propagator factor, 1/[KDK + Mt^2].

All vertices and propagators must be defined in this way.

2. W Boson Self-Energy Diagram

We give here a rather technical example, a program which calculates a diagram
for the W boson self-energy.

After the type declarations, the vertices and propagators are given in terms
of X functions. Only one diagram is evaluated in this example, simply because
no more vertices are listed. If a complete set of vertices were to be given, the
complete result would obtain. The charged W’s are represented by U and U_.

C Calculation of charged vector boson (U,U_) self-energy.

F Fx,F2,B22,B21,B1,B0,VE3,PROP

I AL=N,al,BE=N,be,GA=N,ga,MU=N,mu,NU=N,nu,MUP=N,mup,

NUP=N,nup,L1=N,l1,L2=N,l2,L3=N,l3,L4=N,l4,L5=N,l5,

L6=N,l6,L7=N,l7,L8=N,l8, L9=N,l9,L0=N,l0

I Mu4,Nu4

V P,Q,K

2. W Boson Self-Energy Diagram 101

The use of the following character tables, the Anti statement and the G line
will be explained later:

T TAP: W,Z

T TFE: t,b

Anti,TAP

G 1

X t_t(L1,l1,L2,l2,K) = i*NOM(K,Mt)*G(l2,l1,K)

+ NOM(K,Mt)*Gi(l2,l1)*Mt

X b_b(L1,l1,L2,l2,K) = i*NOM(K,Mb)*G(l2,l1,K)

+ NOM(K,Mb)*Gi(l2,l1)*Mb

G 3

X Ubt_(AL,al,P,BE,be,Q,GA,ga,K) = i*G(ga,be,AL,G6)

X U_b_t(AL,al,P,BE,be,Q,GA,ga,K) = i*G(be,ga,AL,G6)

X Wt_t(AL,al,P,BE,be,Q,GA,ga,K)

= i*[1-8/3s^2]*G(be,ga,AL) + i*G(be,ga,AL,G5)

X Wb_b(AL,al,P,BE,be,Q,GA,ga,K)

= i*[4/3s^2-1]*G(be,ga,AL) - i*G(be,ga,AL,G5)

G

First establish the topology, for example, the simple two 3-vertex, two-
propagator diagram. Note that _ may not be used in file names:

Z IUUB=SELF("U,"U_)

In the lines that come next, we do a character summation. The given
input character is I1, with "U in this case representing the positively charged
W. The sum in DS goes over all characters J1 and J2 such that the name UJ1J2
properly symmetrized corresponds to some X expression. In this case, for J1,
J2 that will only be some combinations of b, b_, t, t_. The argument Sym

in DS implies a symmetrization factor based on the characters that follow. If
they are identical (which will not happen here) a factor 1/2! will be supplied.

The numbers 2, 3, 5 and 6 following J1, J2 imply that only X expressions
in groups 2, 3, 5 and 6 will be inspected. That is the meaning of the G lines
above: they specify group numbers for the X expressions that follow. The
default is 0; and if no groups are specified, all are considered.

When a match is found, it gives rise to a term in the summation, the
function DIB with the characters I1, J1, J2 and I2 as arguments. The function
DC is used for various purposes; here it provides a factor -1^1 if both characters

102 XVI. Character Summation

J1 and J2 appear in table TFE. If one uses "F_ rather than "F the factor is
supplied provided none of the characters appears in the table TFE.

The second number in DC, the exponent 1, may be omitted, and is then
taken to be 1. This is the factor −1 for a fermion loop. The "F in the DC

function stands for factor.

Other uses for DC are summarized later. Here is the character summation:

Id,SELF(I1~,I2~)

= DS(I1;J1;J2;Sym;J1;J2,2,3,5,6,(DIB(I1,J1,J2,I2)

*DC("F,TFE,-1,1,J1,J2)))

The diagram is essentially defined below. Mu4 and Nu4 are the external U
and U_ indices, P is the loop momentum, Q is the U momentum and K = P+Q.
The *’s are used by the Compo command. For example, in VE3, Compo will
rearrange the characters I1, K1 and K2 into the character order defined before.
Every interchange also gives rise to an interchange of the argument groups
delimited by the *:

Id,DIB(I1~,K1~,K2~,I2~) =

VE3(I1,K1,K2,*,Mu4,mu,Q,*,L1,l1,-K,*,L3,l3,P)*

VE3(-K1,I2,-K2,*,L2,l2,K,*,Nu4,nu,-Q,*,L4,l4,-P)*

PROP(K1,-K1,*,L1,l1,K,*,L2,l2,K)*

PROP(K2,-K2,*,L3,l3,P,*,L4,l4,P)

Next, Compo searches the X expression list for names composed of the first
few characters that appear as arguments of the functions VE3, etc., and if
successful keeps the term, otherwise makes it zero:

Id,Compo,<X>,VE3,PROP

Since Compo has composed the name and performed the necessary sym-
metrization, the functions themselves can now be substituted. Here AA is a
dummy name:

Id,VE3(AA~,MU~,mu~,P0~,L2~,l2~,Q~,L1~,l1~,P~)

= AA(MU,mu,P0,L2,l2,Q,L1,l1,P)

Al,PROP(AA~,L4~,l4~,Q~,L3~,l3~,P~) = AA(L4,l4,L3,l3,Q)

At this point the full expression for the diagram has been obtained. The
next step is to do the loop integral. The loop momentum appears in the prop-
agators through the functions NOM, and as arguments in the gamma matrices:

Id,Commu,NOM

Id,NOM(P,M~)*NOM(K,M0~) = F2(M,M0)

Id,Gammas,"C

3. Character Tables 103

Now remove K as a G argument, replacing it by the four-dimensional Q

and the loop momentum P. No index is created by this operation, and the
dimensionality of MU is irrelevant:

Id,Funct,K(MU~) = P(MU)+Q(MU)

Next collect all P’s in the function Fx:

Id,All,P,N,Fx

*yep

Do the P integration:

Id,F2(M~,M0~)*Fx(MU~,NU~) = D(MU,NU)*B22(M,M0)

+ Q(MU)*Q(NU)*B21(M,M0)

Al,F2(M~,M0~)*Fx(MU~) = Q(MU)*B1(M,M0)

Al,F2(M~,M0~) = B0(M,M0)

Do anomalous traces:

Id,Gammas,"A

*end

3. Character Tables

Character tables are distinguished from other tables that can be used as func- character table
definitiontion arguments by means of a colon (:) following the name on the T line.

To every possible character there corresponds a location in the table, zero by
default. Any character mentioned gives a 1, and a −1 in the location for its
antiparticle (denoted by an appended underscore). Specific numbers may be
assigned, for example:

T TAB: A=3:5,B=7,a,z=3

This assigns 3 to A, 5 to A_, 7 to B, -7 to B_, 1 to a, -1 to a_, 3 to z and -3
to z_.

Important: all numbers appearing in character tables must be short integers,
−128 ≤ # ≤ 127.

The DC function uses character tables. Other character manipulations often DC

need a table to specify which particles are their own antiparticles. Except for antiparticle table
DC calculations, where there is a mandatory antiparticle table argument, an
antiparticle table may be given before *fix, which makes it the default, for *fix

example, for the character function DS and the command Compo. In all cases DS
Compo

104 XVI. Character Summation

one may specify a particular antiparticle table for a specific case: for DS as an
argument before the group numbers, for Compo anywhere in the list.

The Anti statementAnti statement

Anti,TAA

establishes character table TAA as the default antiparticle table. It becomes
the default for DS and the Compo command, in which case no antiparticle table
needs to be mentioned explicitly for them. The statement may be given in the*fix

*fix section and is then valid by default for all other sections. The commandAnti command

Id,Anti,TXX

causes all function arguments to be scanned. The table TXX is used to de-
termine which particles are their own antiparticles, and any corresponding
appended underscores are explicitly removed. This command must be used
even if the table TXX has been established as the default antiparticle table by
the Anti statement, if one wants to explicitly remove underscores for such
particles. DS and Compo treat the selfconjugate particles in the default table
implicitly, without the explicit removal of underscores.

4. Character Summation Function DS

The general format is

DS(C1;C2;C3; . . . ;[Sym;C4;C5; . . . ;][TX,][#1,#2, . . . ,](expression))

The []’s indicate optional arguments, the C’s are either characters or dummies
for characters, and the #’s are group numbers. The characters C1, C2, etc.
must be followed by semicolons (;). A leading - sign adds or removes an
underscore. The summation goes over all names that fit the name of some X

expression. For example, if C1 = "A and only two additional dummies C2 and
C3 are mentioned, then DS searches for all X expressions with a name consisting
of three characters, one of which is an A. Then C2 and C3 become the other two
characters, and as such may be used in expression. Sym is tricky, and needs to
be checked in simple cases to be sure the result is what one expects. Examples
are shown at the end of this section.

The optional arguments in DS have the following effects:

• If the symbol Sym is mentioned, then a symmetrization factor is provided
based on the characters following it.

• If a character table TX is mentioned, it is taken to be the antiparticle
table, listing all characters X for which X = X_.

5. Character Function DC 105

• If group numbers are specified, only X expressions in those groups are
considered.

Example:

DS("A;J3;-J3;"B;Sym;J3,-J3,2,(Dic("A,J3,"B)))

Every X expression name containing characters of the form AXX_B (or AX_XB)
yields a term in the sum. For example, the following names fit the pattern
twice:

AEBE_ (with J3="E and J3="E_)
Z_ZAB (with J3="Z and J3="Z_)

The order of the characters in the name is of no importance here. The order
is important, however, for the command Compo, which orders the characters
before searching the name lists.

The next example, including slightly edited output, shows the effect in a
simple case with and without Sym:

X gq_q(a,b,c)=vert(a,b,c)

Z xx=DS("g;J1;J2;(Dia("g,J1,J2)))

Z xxs=DS("g;J1;J2;Sym;J1;J2;(Dia("g,J1,J2)))

*end

xx = + Dia("g,"q,"q_) + Dia("g,"q_,"q)

xxs = + Dia("g,"q_,"q) + 0.

5. Character Function DC

The value of DC is always some numerical factor depending on the character
arguments. In the following, literal or dummy character arguments are denoted
by C1, C2,

DC("F,TX,#1,#2,C1,C2, . . .)

DC("F ,TX,#1,#2,C1,C2, . . .)

For the argument "F, the value of DC is #1
#2 (if absent, #2 is taken to be 1)

provided all characters C1, C2, etc. appear in the table TX. Otherwise it is 1.
For "F_, the value is #1

#2 provided none of the characters appears in the table.
Otherwise it is 1.

106 XVI. Character Summation

Here is an example of a character table TX:

T TX: t,b

DC("P,TX,#,C1,C2, . . .)

Compute and multiply with a permutational factor determined by the oc-
currence of identical characters in C1, C2, etc. The number # is used as an
exponent. For example, with # = 2 and the characters "A, "A, "A, "B, "B,
the value (3! × 2!)2 obtains. The table TX lists particles that are their own
antiparticles (X_ = X). Here is an example of such a character table:

T TAP: W,Z

DC("C,TX,C1,C2, . . .)

DC("C ,TX,C1,C2, . . .)

DC("T,TX,C1,C2, . . .)

DC("T ,TX,C1,C2, . . .)

Compute the sum of the “charges” of C1, C2, . . . as listed in table TX. If the
total charge is 0, then DC is 1, otherwise it is 0. If the character "C_ is used,
the result is the opposite. If the character "T is used, keep the term if the sum
is positive or zero. If "T_ is used, keep it if the sum is negative.

Here is an example of such a character table: 1 is assigned to the particle
Z, and also 1 to its antiparticle Z_. If the second number 1 had not been given,
it would have been taken to be the opposite of the first number, which would
have given -1 for the antiparticle in this case:

T TX: Z=1:1

Chapter XVII

Gamma Algebra

The equations and algorithms used in this chapter will not be derived here.
The derivations can be found in a separate publication (M. Veltman, “Gam-
matrica,” Nuclear Physics B319 (1989) 253–270).

1. Other Dimensions

The treatment of gamma’s has become quite complicated in the current version
of Schoonschip, essentially because gamma algebra can now be done in other
than four dimensions; but things have been organized so that for most cases
the default options are sufficient. It is nonetheless essential that a number of
things be well understood.

The only quantities for which other than four dimensions can be specified other dimensions
only for indicesare indices. There is no way to specify the dimensionality of a vector or of a

dot product. For gamma matrix manipulations, Schoonschip takes vectors to
be four dimensional, i.e., G(L,p) contains only G(L,1) through G(L,4). That
might seem to be a restriction, but in fact it is not. Refer to the "C option
discussed below.

In practice it is the loop momenta that are not four-dimensional vectors loop momenta
in the sense just mentioned. There are several ways to deal with them. The
easiest seems to be to do loop integrations before doing gamma algebra. First
the problem is prepared by using the "C option to collect the gamma’s (see
below). Then the loop momenta are replaced by external four-dimensional
momenta, or by index pairs with N-dimensional range. These can be handled
properly. For the moment it will be assumed that all momenta occurring as
arguments of gamma matrices are four dimensional, but that indices may be
either four or N dimensional. No provision has been made to handle indices

107

108 XVII. Gamma Algebra

with other ranges than these two, except that one may use any algebraic
symbol instead of N.

2. New Notation

A new notation has been implemented. Instead of one loop index, the gamma’sloop notation
may now have two loop indices. This very much eases the task of ordering the
gamma’s when they are generated by an automatic procedure. Gamma’s can
be rounded up (i.e., “corralled”) and put in the proper sequence based on the
indices. The notation is:

G(i1,i2,mu) Gi(i1,i2) G5(i1,i2) G6(i1,i2) G7(i1,i2)

Here Gi is the unit matrix. The meaning of G6 and G7 is as before:

G6 = Gi + G5, G7 = Gi - G5

The ordering is based on the loop indices:gamma ordering

G(i1,i2,mu) * G(i3,i4,nu) * G(i2,i3,al)

= G(i1,i4,mu,al,nu)

which corresponds to the old notation

G(L,mu)*G(L,al)*G(L,nu)

One may use the multi-index notation G(i1,i3,mu,al,nu) directly. It has
actually been used internally (but with only one loop index) for a long time.
Gi, G5, G6 and G7 may also appear in the list:

G(i1,i2,mu,G5,al,be,G6,ga,Gi,la,G7)

Such a string is called a trace if the first and second indices are the same.traces
Otherwise the expression is called a gamma string, or string for short. Astrings
string may be odd or even, depending on the number of arguments, excluding
Gi, G5, G6 and G7. Thus, the string above is odd. Traces of odd strings are
always zero.

To avoid a proliferation of indices, it is preferable to use integer numbersnumerical loop
indices instead. For example:

G(1,2,mu) * G(3,4,nu) * G(2,3,al) = G(1,4,mu,al,nu)

When dealing with more than one string, number ranges may be reserved forreserved loop range
the different strings, thus avoiding confusion. Example:

3. Review of Gamma Operations 109

X Vert(n,mu) = G(n,n+1,mu,G6)

Z xx = Ubg(1,mm,p)*Vert(1,mu)*G(2,3,nu)*Ug(3,mn,q)

*Ubg(10,mn,k)*Vert(10,mu)*Ug(11,me,qq)

3. Review of Gamma Operations

In this section, we review the sequence of operations, with various options,
that Schoonschip carries out when it works on gamma matrices. For future
reference, we mention here the characters that correspond to the options. The
command syntax and how the option characters are used in it are described
in Section 4 on the Gammas command.

3.a. Collection

Schoonschip begins its work on gamma matrices by rounding them up. For gamma roundup
two-index gammas the ordering is determined by the indices. For gammas
with one index (the old notation) the ordering is based on the order in which
they appear in the expression at hand. By default the strings are normalized, normalization
i.e., directly neighboring equal arguments are eliminated,

G(. . . ,x,x, . . .) = D(x,x)*G(. . . , . . .)

and traces of odd numbers of gammas (not counting G5, etc.) are set to zero.
Normalization does certain other things, depending on the situation, such
as collecting G5’s in four-dimensional strings. It can be suppressed with the "N

option "N_.

After rounding up, the strings and traces appear with only one loop index. loop index
consolidationThat index is chosen from among the indices that are present: the smallest

number (or earliest mentioned index) is taken. Indices are “smaller” than
numbers.

G(1,2,mu,al) * G(3,4,nu,G5) * G(2,3,la)

→ G(1,"s,"4,mu,al,nu,G5,la)

The character argument "s indicates a gamma string rather then a trace. "s, "4
The "4 is the unit G matrix; the need for this argument will become clear
below. The 1 is now the loop index. The following example generates a trace,
indicated by the character argument "t: "t

G(i1,2,mu,al) * G(3,i1,p,G5) * G(2,3,la)

→ G(i1,"t,"4,mu,al,p,G5,la)

110 XVII. Gamma Algebra

For brevity these objects will be called G-strings in the following. The argu-G-strings
ments may be indices, vectors or Gi–G7.

At this point we have two types of G-strings, namely, "s- and "t-strings.collection
This very first phase of the work is called collection. Normalization ("N) is"N

optional. There is an option to stop working at this point ("C)."C

3.b. Preliminary Reduction

The next step is to apply all the known algorithms to these objects. One
may specify which strings are to be worked on, either by a specific loop indexloop selection
or by a number range. We discuss that further below. Schoonschip starts
by scanning all arguments in the G-string. If all indices have the (default)
range 1–4 then the string becomes a four-dimensional G-string. Any vectors
that occur are considered to be four dimensional. If a string becomes four
dimensional, the character argument "s or "t is changed to "S or "T. Some"S, "T
of the manipulations that are done on the strings:

• Adjacent identical arguments are eliminated. For traces that includes
the first and last arguments.

• For "S- and "T-strings, any G5, G6 and G7 are anticommuted to the left;
and the result is inserted in place of the "4 argument.

• Simple cases such as the trace of the identity are completely worked out.

Examples:

I mu,nu,al=N,be=N

G(1,"s,"4,mu,nu,al) → unchanged
G(1,"t,"4,mu,nu,al) → 0 (odd trace)
G(1,"s,"4,mu,al,al,nu) → N * G(1,"S,"4,mu,nu)

G(1,"t,"4,mu,al,be,mu) → 4 * G(1,"t,"4,al,be)

G(1,"t,"4,G5,mu,G6,nu) → G(1,"T,"6,mu,nu)

→ 4 * D(mu,nu)

G(1,"s,"4,G5,mu,G6,nu) → G(1,"S,"6,mu,nu)

→ G(1,"S,"4,mu,nu)

+ G(1,"S,"5,mu,nu)

The last step also belongs to the class of doing simple cases. The expansion
of G6 would not have been done if there had been more index arguments. One
may choose to stop here, by turning off all the options that follow.

3.c. Sum-Splitting 111

3.c. Sum-Splitting

What comes next is sum-splitting. N-indices in "s or "t strings are split into sum-splitting
four dimensional and N-4 dimensional parts. The quantity N_ is taken to stand N
for N-4. Here are the equations for the case of two index pairs:

I mu,nu,al=N,be=N

G(1,"s,mu,nu,al,be, . . . ,al,be) →
G(1,"S,mu,nu,al,be, . . . ,al,be)

± G(1,"s,"_,be) * G(1,"S,mu,nu,al, . . . ,al)
± G(1,"s,"_,al) * G(1,"S,mu,nu,be, . . . ,be)
± G(1,"s,"_,al,be,al,be) * G(1,"S,mu,nu, . . .)

The sign is determined by the convention that the indices to be split are
first moved to the very left. They are taken to anticommute with all four-
dimensional indices and vectors, and to commute with G5, G6 and G7. There
is an option ("A), for traces containing an even number of G5’s or for strings "A

regardless of the number of G5’s, to specify anticommutation with G5. In that
case G6 and G7 are expanded before the sum-splitting is done. For traces with
an odd number of G5’s, commutation is used even if the anticommutation op-
tion is specified, simply because the trace would not otherwise be well defined.
The outcome would not be invariant under a cyclic rotation of the arguments.

Note the "_ character argument. The range of the indices in a "_-string "

is from 4 to N (not including 4). Both the string and trace of the unit "_ are
one:

G(1,"s,"_) = 1

G(1,"t,"_) = 1

Aside from that, "_-strings are treated like the other nonfour-dimensional
strings. For example, the elimination of a direct pair:

G(1,"s,"_, . . . ,al,al, . . .) = N_ * G(1,"s,"_, . . .)

Sum-splitting requires that all N-indices occur in pairs. That is not a real index pairs
restriction, because the pairs need not occur in one and the same string. One
index may occur in one string and the other in another string, or even in some
other function.

If a string contains only N-range indices then it is called pure, and no sum- pure strings
splitting is done. Index pair elimination and trace evaluation are done directly
on such a string.

The default is to do sum-splitting ("S). One can stop at this point, by "S

suppressing the options that follow.

112 XVII. Gamma Algebra

3.d. Unification

The next step is the unification of G-strings. That is not done ("U_) as theunification
default, because it is not always advantageous, and because it may be necessary"U
to indicate explicitly which strings are to be unified. Unification is based on
Chisholm’s equation:Chisholm’s equation

G(1,"X,a1,a2, . . . ,mu,b1,b2, . . .) * G(2,"T,mu,c1,c2, . . . ,cn)
= 2 * G(1,"X,a1,a2, . . . ,c1,c2, . . . ,cn,b1,b2, . . .)
+ 2 * G(1,"X,a1,a2, . . . ,cn, . . . ,c2,c1,b1,b2, . . .)

where "X may be "S or "T. Its application requires:

• The G-strings involved must be four dimensional.

• They must have one index in common (mu in the above).

• At least one of them must be a trace.

The general rule is that unification is advantageous if the G-strings haveadvantage
arguments in common other than the index mu shown explicitly above. The
common arguments may be either vectors or indices. Thus, for example, there
is an advantage if c1 and b1 are the same, because in the second term on the
right-hand-side that can be worked out. Work can be stopped after unification
by turning off the options that come next.

3.e. Index Pair Elimination

The next step is to eliminate index pairs in the G-strings. For four-dimensional
strings there is the Kahane algorithm which eliminates all pairs in a givenKahane algorithm
string in one sweep; for "s- and "t-strings there is a single pair algorithm that
can be applied repeatedly. The default is to do pair elimination ("I). One"I

may specifically allow ("i) or inhibit ("i_) index pair elimination in "_-type"i

strings separately. To stop the work here, turn off the remaining options.

3.f. Vector Pair Elimination

Vector pairs in four-dimensional strings are eliminated ("P) in the next step."P

This is also a single pair algorithm that can be applied repeatedly. It is called
the P-algorithm. One can stop here, by turning off the remaining option.

3.g. Traces and Final Reduction 113

3.g. Traces and Final Reduction

The final step is to actually evaluate the traces, and to reduce the four-
dimensional strings to a standard form ("W). This is called the W-operation
(for final work). "W

3.h. Summary of Operations

To summarize, the sequence of operations is the following:

• Rounding up all strings. This step cannot be avoided. All the G’s are
rounded up, even those that are not going to be worked on. By default
the strings are normalized ("N).

• Preliminary reduction. Basic algebraic relations are worked out.

• Sum-splitting ("S), done by default. The ’t Hooft–Veltman convention
is used consistently throughout. For traces with even numbers of G5’s,
there is an option ("A) to have anticommutation of G5’s instead. Even if
one specifies "A, the ’t Hooft–Veltman convention is still used for traces
with odd numbers of G5’s. The option "A does nothing to strings.

• Unification. Not done by default ("U_).

• Index pair elimination ("I), also for pairs in "_-type strings ("i) (the
latter may be inhibited with the "i-option). This is done by default.

• P-algorithm for four-dimensional strings. Done by default ("P).

• W-operation. Working out reduction for four-dimensional strings and
final traces ("W).

4. Gammas Command

Each option is characterized by a single character, namely, N, A, S, U, I, P or W. options
The command that does all this is Gammas

Id,Gammas

The default is to work on all strings. For most cases that use the two-index G

notation, this will do. If there are single-index G’s (old notation) then one has
to specify which are strings and which are traces. The default is to take them
to be strings. If a trace is intended, loop indices have to be mentioned:

Id,Gammas,Trace,i3,i4

114 XVII. Gamma Algebra

In strings i3 and i4 the "s is replaced by "t.

When one or more specific indices is mentioned in the Gammas command,
only those loops whose loop indices appear in the list are worked on. Separatespecific loops
options can be specified for any individual loop index. Options can be on or
off. They are turned on by the appropriate character argument, and turned
off when the argument is followed by an undersore (_). Furthermore, in case
numbers are used as loop indices, one can indicate ranges of loop numbers.
Here is the syntax:

Id,Gammas,C1,C2,i1,1-4:C3,C4,Trace,i2:C5,C6,i3,9-10

The character arguments C1, C2, etc., may be any of the following:options

"N ("N) normalize
"A ("A) do anomalous trace
"S ("S) do sum-splitting
"U ("U) unify strings
"I ("I) do index pair reduction
"i ("i) do index pair reduction in N_-type strings
"P ("P) do P tricks
"W ("W) do final work

There is an additional option "C. It turns off all options except for "N, i.e.,"C

only collection and normalization are done, with the further difference that
there is never a specialization to four dimensions. This is essential if there
is an integration over a vector which is not four dimensional. When an N-
dimensional integration is to be done, one typically first collects all G’s with
the "C option, then does the integrations, and after that does the remaining
work through another Gammas command.

To turn off normalization as well, include "N_ along with "C.

The default is defined by those character arguments that are mentioneddefault options
first. If none is mentioned, the default is "N, "A_, "S, "U_, "I, "i, "P, "W.

G-strings with loop indices mentioned after the Trace argument are forcedTrace

to be traces ("t).

A loop index may also be specified by a number range. Any G-string whoseloop index ranges
loop index is included in the range is worked on. If the loop index or the range
is followed by a colon, then the character arguments after the colon define
options specific to those loops. They override the default options. Example:

Id,Gammas,"A,"U,1-9:"A_,10-20:"U_,"I_

Strings with loop indices 1–9 and 10–20 are considered. Unification is at-
tempted on loops 1–9. Loops 1–9 have commuting G5’s with respect to sum-

5. Vector Extraction 115

splitting, 10–20 are anticommuting for traces with an even number of G5’s or
for strings with any number of G5’s. No index pair elimination is attempted on
loops 10–20, but index pairs in N_-type strings are still worked on. To inhibit
that, "i_ must also be mentioned.

Please note the use of the colon (:). It is there because one can in princi-
ple also use character arguments as loop indices for two-index G’s (character character loop

indicesarguments are ordered between numbers and indices). Several characters are
illegal in that respect: "S, "T, "s and "t, at least if they occur as the second
argument in a two-index G.

Finally, we note that it is sometimes necessary to do the Gammas command
twice when a string and a trace are both present, for example,

Id,Gammas

*yep

Id,Gammas

In general, one may need such a repetition for every string/trace factor.

5. Vector Extraction

As noted before, all vectors are considered to be four dimensional in all gamma
operations. There are at least two ways get around that restriction, and some
special commands have been introduced to make it simpler to do so.

5.a. All and Iall Commands

Consider a case in which there occurs a momentum p that is to be integrated
over N-space, and suppose p occurs as a G argument:

G(1,2,al,be,p,al,be,p)

(the two-index notation is used from now on). The first step is to get the p out.
The following new command, essentially a combination of existing commands,
can be used to good effect here: All

Id,All,p,N,F

In this command p is a vector, N is an optional argument specifying the range
of any indices to be created, and F is a function defined in an F list. The
command rounds up all p’s, including those occurring in functions and dot
products, and collects them in the function F.

116 XVII. Gamma Algebra

Here is an example (the S declaration is the old version of A, and still
works):

V p

F F

S N

Z xx = pDq*pDp*F1(aa,bb,p)*p(mu)

Id,All,p,N,F

*end

This is the output:

xx = + F1(aa,bb,Naa)*F(Naa,mu,q,Nab,Nab) + 0.

Here the quantities Naa and Nab are indices that have been created, with range
N. If one substitutes

F(i1~,i2~,i3~,i4~,i5~) = p(i1)*p(i2)*p(i3)*p(i4)*p(i5)

then the original expression reemerges. This can actually be done more easily
with the command Iall, the inverse of All,Iall

Id,Iall,p,F

which searches for F and restores it to the original expression.

Both All and Iall have an alternate syntax. See Chapter XII, Substitution
Commands, as well as the example further below.

The All command may now be used to eliminate p from the G-string. Next
the integration may be done, for example,

Id,F(i1~,i2~) = D(i1,i2)*F20(k) + k(i1)*k(i2)*F22(k)

where k is a four-dimensional vector. After that the gamma work can be done.

Here is the full example with output:

I al,be,mu,nu

S N,N_

V p,k

F F,F20,F22

Z xx = G(1,1,al,be,p,al,be,p)

Id,All,p,N,F

Id,F(i1~,i2~) = D(i1,i2)*F20(k) + k(i1)*k(i2)*F22(k)

5.b. All with Ndotpr Command 117

Id,Gammas

*end

xx = + F20(k) * (64 - 32*N_) + F22(k) * (16*kDk)

It should be emphasized that the symbol N, occurring in the All command,
must be defined in the symbol list, together with the symbol N_. This is done predefinition of N, N
automatically if such a symbol already occurs as a range in an index list, but
in the above example that did not happen. The All command will not work
otherwise. The quantities p and F must also have been defined before, either
implicitly or explicitly. N cannot be defined implicitly, because it would be
taken as an index rather than an algebraic symbol. Again, N_ is supposed to
be N-4.

Warning: For dimension N, one must be careful about the use of the Iall

command, which is purely four dimensional. See in particular the discussion
of the Ndotpr command in the following subsection.

The All command is really a combination of three existing substitutions,
namely

Id,p(mu~)= . . .
Id,Dotpr,p(mu~)= . . .
Id,Funct,p(mu~)= . . .

In addition, All smoothly handles the creation of the function F with its
undetermined number of arguments.

The substitutions above have been modified slightly in this version of
Schoonschip. The range of the index mu is now taken into account. If an
index is created in the course of working out these substitutions, it is given
the range of mu.

5.b. All with Ndotpr Command

The second method for dealing with vectors in G-strings is as follows. Let there
be a string containing several vectors as arguments:

G(1,1,mu,G5,p,q,nu,G5,q,p)

Now use the All command, but specify the function G rather than the vector p:

Id,All,G,N,F1

Again, N, N_ and F1 must have been defined before. This command takes
all vectors out of the specific function mentioned (G in this case) and collects
them, together with the indices that are created, into the function F1:

118 XVII. Gamma Algebra

F F1

I mu,nu

V p,q

Z ft = G(1,1,mu,G5,p,q,nu,G5,q,p)

Id,All,G,N,F1

*end

The result is:

ft = + G(1,1,mu,G5,Naa,Nab,nu,G5,Nac,Nad)

*F1(p,q,q,p,Naa,Nab,Nac,Nad)

Now the gamma work can be done. The result is rather messy, and it is
displayed here (slightly edited) for a simpler case:

F F1

I mu,nu

V p,q

A N,N_

Z ft = G(1,1,mu,G5,p,nu,G5,q)

Id,All,G,N,F1

P output

*yep

ft = + G(1,1,mu,G5,Naa,nu,G5,Nab)*F1(p,q,Naa,Nab)

Id,Gammas

P output

*yep

ft = + 4*F1(p,q,Dim_N_,Naa,Dim_N_,Naa)*D(mu,nu)

+ 4*F1(p,q,Dim_4,mu,Dim_4,nu)

+ 4*F1(p,q,Dim_4,nu,Dim_4,mu)

- 4*F1(p,q,Dim_4,Naa,Dim_4,Naa)*D(mu,nu) + 0.

Note that Schoonschip has included arguments ahead of the indices insideDim

the function F1 to show the range. The function F1 with these prefixes cannot
be handled by any substitution or command except the command Ndotpr,Ndotpr

especially created for this situation. It works out the F1 arguments and creates
various symbols analogous to dot products (but they are not, they are symbols)
showing the summation range:

6. Examples 119

Id,Ndotpr,F1

P output

*end

ft = 4*p(mu)*q(nu) + 4*q(mu)*p(nu)

+ D(mu,nu) * (4*pq_ - 4*pq4) + 0.

Here pq_ means the dot product of p and q, but including only components
between 4 and (including) N. Similarly pq4 denotes a dot product where only
the first four components enter. Obviously pq4 + pq_ = pDq, where pDq is
the normal dot product. Schoonschip sometimes generates a symbol pq0 as a
replacement for pDq in these situations.

The symbols pq_, pq4 and pq0 are algebraic symbols. They are created
during execution; and if a symbol list is requested in a later section (after
another *yep, for example) the A list would be:

A i=i, N, N_, pq_, pq4, pq0

A curiosity: if the "A option had been specified in the Gammas command, the "A

term pq_ would have come out with the opposite sign. That is because there
is one G5 between p and q.

Here is the example once again, but without the intermediate printout:

F F1

I mu,nu

V p,q

A N,N_

Z ft = G(1,1,mu,G5,p,nu,G5,q)

Id,All,G,N,F1

Id,Gammas,"A

Id,Ndotpr,F1

*end

ft = 4*p(mu)*q(nu) + 4*q(mu)*p(nu)

+ D(mu,nu) * (- 4*pq_ - 4*pq4)

6. Examples

That concludes the discussion. The rest of this chapter consists of more ex-
amples.

120 XVII. Gamma Algebra

C G collection including spinors.

I mu=N,nu=N

V p,q

Z xx = G(i1,i2,mu)*G(i2,i3,nu)*Ubg(i1,M,p)*Ug(i3,M,q)

Id,Gammas,"C

*end

xx = + Ubg(i1,M,p)*G(i1,"s,"4,mu,nu)*Ug(i1,M,q) + 0.

C No problems with complex conjugation including a G6:

I mu=N,nu=N

V p,q

Z xx = Conjg(G6(i0,i1)*G(i1,i2,mu)*G(i2,i3,nu)

*Ubg(i0,M,p)*Ug(i3,M,q))

Id,Gammas,"C

*end

xx = + Ubg(i3,M,q)*G(i3,"s,"4,nu,mu,G7)

*Ug(i3,M,p) + 0.

For a pure string (containing only N-indices), all index pairs can be elim-
inated, and traces can be evaluated completely. Here is an example with a
string and a trace:

I mu=N, nu=N, al=N, be=N, ga=N

Z xx = G(i1,i2,mu,ga,nu,al,be,ga)

+ G(i1,i1,mu,ga,nu,al,be,ga)

Id,Gammas,"C

P output

*yep

xx = + G(i1,"s,"4,mu,ga,nu,al,be,ga)

+ G(i1,"t,"4,mu,ga,nu,al,be,ga)

Id,Gammas

*end

xx = + D(mu,nu)*D(al,be) * (8 - 4*N)

+ D(mu,al)*D(nu,be) * (- 8 + 4*N)

+ D(mu,be)*D(nu,al) * (8 - 4*N)

6. Examples 121

+ G(i1,"s,"4,mu,nu,al,be) * (- N_)

- 2*G(i1,"s,"4,mu,be,al,nu) + 0.

Except for pair elimination, nothing has been done to the strings. One could
actually bring them into some sort of normal form, but the advantages of that
are unclear, and it is also uncertain what the best normal form might be. The
work involved and the number of terms generated woud be considerable. For
that reason nothing has been implemented. But a possible procedure will be
discussed now.

Define the function AG to be totally antisymmetric in all of its arguments
except for the first, which is the loop index. If the number of arguments beyond
the first is m, then AG is equal to the totally antisymmetric combinations of
m gammas divided by m!. Examples:

AG(L) = Gi(L)

AG(L,mu) = G(L,mu)

AG(L,mu,nu) = 1/2 * { G(L,mu)*G(L,nu)

- G(L,nu)*G(L,mu) }

AG(L,mu,nu,al) = 1/6 * { G(L,mu)*G(L,nu)*G(L,al) - . . . }

. . .

Any string can be written as a linear combination of such functions AG:

G(L,"s,m1,m2,m3, . . .) = a0*AG(L) + a1*AG(L,n1)

+ a2*AG(L,n1,n2) + . . .

For example:

G(L,"s,"4,mu,nu) = D(mu,nu)*AG(L) + AG(L,mu,nu)

For the case of three indices:

G(L,"s,"4,mu,nu,al) = D(nu,al)*AG(L,mu)

- AG(L,nu)*D(mu,al) + AG(L,al)*D(mu,nu)

+ AG(L,mu,nu,al)

The number of terms increases faster than the number of terms for a trace.
For four indices, the number of terms is 10 (compared to 3 for a trace); for
five it is 11; and for six it is 76 (compared to 15). Here is a program that
computes this expansion for the case of four indices (where only a0, a2 and
a4 are non-zero):

I mu=N, nu=N, al=N, be=N, b1=N, b2=N, b3=N, b4=N

Z xx = { 1/(4*DB(4)) * G(L,"t,"4,mu,nu,al,be,b1,b2,b3,b4) }

* AG(L,b4,b3,b2,b1)

122 XVII. Gamma Algebra

+ 1/(4*DB(2)) * G(L,"t,"4,mu,nu,al,be,b1,b2)

* AG(L,b2,b1)

+ 1/4 * G(L,"t,"4,mu,nu,al,be) * AG(L)

Id,Gammas

Id,Asymm,AG,2,3,4,5,6

*end

Note that AG was specified to be antisymmetric in more arguments than actu-
ally occur. Schoonschip simply ignores the excess.

The time required is considerable because of the large traces that have to
be computed. For six indices, the time to evaluate AG is about 150 seconds
(8 MHz M68000). The method shown is, however, not the most efficient.

Chapter XVIII

Statements

We provide here an alphabetical listing of Schoonschip statements, including
some that are discussed more fully in succeeding chapters. A functional listing
is given in Chapter XXII, Summary, which also includes a listing of decla-
rations. The logical distinction between a “declaration” and a “statement”
is not totally unambiguous. Essentially, a declaration is a passive statement
that defines or restricts a symbol type, while statements manipulate symbols or
files. Substitutions and substitution commands do manipulation, but we put
them in their own special category, not included in this chapter. Conditional
statements form their own category as well. Conditional input statements
(Chapter XIII) are strictly speaking not part of the Schoonschip language at
all, but come under the category of compiler/interpreter directives.

Here is the list of statements:

Bdelete ... Delete blocks.

Beep options If no options all beep requests are cleared.

If #,t issue # beeps at termination.

If #,* issue # beeps when concluding a section (* de-
limited).

If #,e issue # beeps in case of an error.

Common ... Declare common files.

Delete ... Delete files.

Digits # Set the number of digits to be printed for floating point
numbers.

Directory ... Define directories and file number ranges to be used for
large files. See Chapter XX, File Handling Statements.

123

124 XVIII. Statements

Dostop on Sets the Dostop flag on from outside a do-loop, to force
exit from the do-loop at a * line.

Dostop off clears the flag to its default, off condition.
See Chapter III, Input Facilities, and also the Dostop

substitution command. Tricky.

Dryrun # Do a “dry run”. Print at most # terms at completion.

End End of external disk file. See Read.

Enter fname Enter common files from disk file fname.

External fname Read position independent, machine language disk file
fname into memory. The command Extern executes
the file.

Fortran #, Fortran output in earlier versions of Schoonschip often
Brackets, needed considerable editing. That section of Schoon-
Compression, schip has been rewritten. The # argument specifies how
.,A many continuation lines Fortran statements may have.

Brackets directs Schoonschip to place brackets around
negative exponents. Next, the default Fortran output
has only complete terms on a line (if possible), rather
than the compressed format desirable in the old days
when cards were used. Compression selects the old,
compressed format. The . option instructs Schoonschip
to supplement every integer with a decimal point, as
required by some Fortran compilers. Finally, the char-
acter A specifies output for the A compiler. Every item
in the statement is optional, the defaults being: 9 con-
tinuation lines/statement, no brackets, no compression,
no . after integers, Fortran output only.

Only the first character of Brackets and Compression

is significant, and it may be upper or lower case.

A minus sign in front of Brackets or Compression

switches back to the default; e.g., Fortran -Brackets

instructs Schoonschip not to put brackets around neg-
ative exponents.

The exponent of a number of normally indicated by
the character E (e.g., 1.23E+10). If a number of digits
larger than 5 has been specified by a Digits statement,
then D is used instead (1.23D+10).

Freeze xfile Freeze common file xfile. See Chapter XIX, Handling
Large Problems.

XVIII. Statements 125

Keep ... Keep local files over a *next.

Large # Here # is a number in the range 1 to 5 inclusive. The
default is 2. Specify the number of intermediate output
files to be used for large file sorting. See Chapter XX,
File Handling Statements.

Lprinter Print output lines up to 130 characters.

M xx = ... Compare the expression xxx = . . . to a preceding line
of R input. To be followed by *yep. See Chapter XXI.

Maximum # Specify the maximum size of intermediate output sub-
files. The default is 110, 000. See Chapter XX, File
Handling Statements.

Names ... Declare name lists for quantities in common files. The
common files have been read previously from external
disk files by the Enter statement.

Nprint ... Do not print Z files.

Nshow Switch Showl off.

Oldnew xx=yy Rename quantity xx as yy.

Outlimit # Set a limit of # bytes on disk usage. For large file
usage this sets the limit on total disk space used for
the intermediate output files. Default: 500, 000 = 0.5
megabytes.

Overflow off Suppress short number overflow error trapping (expo-
nents, function arguments). May appear in the *fix

section.

Overflow on reactivates overflow error trapping.

P options Set options for printout. See Chapter VII, Print Op-
tions.

Print ... Specify Z files to be printed.

Precision # This specifies the precision to be used in dealing with
numbers. The number # applies to various internal sit-
uations. In the output, two terms are taken to cancel if
their addition gives a cancellation up to # digits. Com-
paring numbers with the Coef command uses the same
precision criterion. Also, when writing terms to disk,
every number is truncated to 10 digits if # is 9 or less.
That saves considerably on disk space. The default is
22 digits.

126 XVIII. Statements

Progress In case there is no output to the terminal, print a dot
(.) to the terminal every 128 terms to show progress.
Identical to Progress on. Progress off switches the
printing of dots off after it has been turned on.

Punch ... Specify Z files for which Fortran output is to be done.

R xxx = ... Transform the Schoonschip text output expression xxx

= . . . into input for *yep. Useful for large expressions
that would normally overflow the input space. See
Chapter XXI.

Rationalize # By default, Schoonschip tries to rationalize numbers.
The number # specifies to how many digits the numbers
must agree. For example, Schoonschip will rationalize
π = 3.141592654 . . . to 22/7 = 3.142857143 . . . if 3 is
specified. Specifying 5 gives 355/113 = 3.14159292 . . . ,
which actually agrees to 7 digits. It should perhaps
be noted that after every rationalization Schoonschip
actually performs the division and compares the result
with the input number, just to be sure. If 0 is put for
#, no rationalization is done. The default is 22 digits,
with check up to 26 digits.

Read fname Read external disk file fname.

Round on Numerical expressions as function arguments are nor-
mally converted to short integers by truncation. After
a Round on statement, the conversion goes by rounding
to the nearest integer.

Round off resets to the default conversion for function
argument expressions, truncation.

Screen Print output lines up to 80 characters (default).

Showl Short for Showlength. Show statistics for large disk
files as they are being written.

Silence Instruct Schoonschip not to print Ready to the screen
and wait for an answer for certain pc’s that normally
clear the screen immediately upon termination.

Synonym name1 Every occurrence of name1 between single quotes is re-
=name2 placed by name2. This is very much like the replacement

of BLOCK arguments, but is not limited to a block. The
end of the range of validity of a set of synonyms is
defined by a Synonym statement with no arguments.
At most 16 synonyms are allowed.

XVIII. Statements 127

Traditional Do traditional sorting. See Chapter XX, File Handling
Statements.

Write fname Write all common files to disk file fname.

Chapter XIX

Handling Large Problems

Considerable attention has been focused on the question of large output. The
traditional output sorting method of Schoonschip is inadequate for truly large
problems, with more than 50,000 output terms. Moreover, as small computer
systems do not have infinitely large disk space available (with 20 megabytes
not uncommon), methods of economizing on disk space are important. In this
chapter, we describe the methods and tools that Schoonschip makes available
for attacking large problems. Most of the actual statements and their syntax
are given in the following chapter, File Handling Statements, with the major
exception of the Freeze statement, which is described in Section 4 of this
chapter.

1. Disk Utilization

The traditional system works as follows. When terms that have been generated traditional sorting
arrive at the sorting routine, they are compared with the terms already present
in the output store. If like terms are found, coefficients are added. If no match
is found for a term and there is space left, it is entered into the output store.
Otherwise the term is simply written to disk, and the addition of further terms
to the output store is inhibited. This method is quite wasteful of disk space.
The timing depends crucially on the disk system, and is generally slow.

The new method uses up to five output files; the number can be specified new sorting
by the Large statement described in the next chapter. If the output store Large
is full, its contents are dumped, say on file1, and sorting resumes. If the
output is again full, the store is again dumped, say on file2, etc. If the
maximum number of files is reached, then merging is done rather than straight
dumping. Assume for example that a maximum of three output files has been

129

130 XIX. Handling Large Problems

specified. And assume that three files, file1, file2 and file3 have already
been created. At this point, when the output store is again full, a merge takes
place. The smallest file (say file2) is selected, and merged with the contents
of the output store to produce a new file, called for the sake of argument
file2a (the actual naming conventions are given below). And so on. When
the whole problem is finished there are three possibly very large files. As a
final step, these three files are piecewise merged into the output store and
printed, etc.

With this method, disk usage is already considerably less than with the
traditional method, because only sorted expressions are written to disk. Still,
quite a bit more disk space may be used than needed for the final size; each of
the above three files may well have the same order of magnitude as the final
size.

If disk space is really crucial, the above method may be applied with the
specification that only one file is to be used. The first overflow produces a file.
The second causes that file to be merged with storage, giving rise to a new
file. Disk usage is at a maximum when the last part of the file being merged
is read, and the new file is almost written out. Disk usage is then about twice
the size of the final result.

To deal with this final factor of two, a fractured file system has been im-fractured files
plemented. A fractured file is a file split up into smaller files. Each of these
smaller files is a normal file as far as the the operating system is concerned,
and only one at a time is open for reading or writing. Moreover, each is im-
mediately deleted after being read. In the case described above, one would for
example produce file1, fractured into five files called file1_0, . . . , file1_5.
When merging this with the output store, file2, fractured into file1a_0,
. . . , file1a_7 (for example) is created. When the latter subfiles are being
created, most of the subfiles of file1 have been deleted. The maximum disk
space used with this method is usually about equal to the size of the final file
plus an overshoot. The overshoot may be the size of one extra subfile. Of
course the overshoot is problem dependent; computing the difference between
two large but equal expressions leads to a final size of zero, but the interme-
diate result may be as large as either of the original expressions. Schoonschip
assumes that an overshoot is at least as large as the allowed size of the output
memory. That is used to skip the last merge, by dumping the last output
store onto file2 and then merging the possibly very large file1 with the
much smaller file2 while printing.

This method appears to be about the best one can do to minimize disk
usage. The timing is reasonable, but goes up quadratically with the size of
the final file. To give an idea, the merge time for a 6 megabyte final result ismerge time
about 6,000 seconds, for a typical M68000 system (8 MHz).

2. Other Factors 131

If space is no issue, then one can specify more than one dump file. The
sorting time decreases roughly linearly with the number of files. That is of
course very problem dependent.

The way files are actually named is the following. All names are of the subfile names
form

TAPxyyyL

where x and yyy are hexadecimal digits. The equivalent of file1 0, file1 1,
. . . , file1 10, . . . , in the discussion above is TAP6000L, TAP6001L, . . . ,
TAP600AL, . . . The equivalent of file1a_0, etc., is TAPB000L, etc. Then
file2_0 is TAP7000L, file2a_0 is TAPC000L, etc. Thus the two groups of
output files are TAP6 through TAPA and TAPB through TAPF. When merged
with storage, file TAP6 produces file TAPB, and conversely.

The yep file has also been made into a fractured file. The name used *yep

is TAP4yyyL, with yyy starting at 000. In this way, disk usage for *yep is
minimized.

2. Other Factors

Output memory size is a very important factor. Sorting time decreases roughly output memory
linearly with increasing memory size. To allow for adaptation to individual
systems, the size of the output memory can now be specified on the command
line when Schoonschip is called. See Appendix A, Command Line Options. Be
careful, however, with systems having dynamic memory management, such as
Sun’s. If more than the available memory is requested, those systems simply
accept the request and swap memory onto disk as needed. That would of
course be highly counterproductive, and would bring Schoonschip virtually to
a halt.

The format of numbers plays a role, because integers (the largest is number format
2,000,000,000) take less space on the disk than most other numbers (6 ver-
sus 14 bytes for any one term). Thus if all numbers can be made into integers
by means of some overall factor, that will improve both speed and output
size. The factor can be divided out later, if desired. If a precision of less than
9 digits is specified (Precision 9) then all numbers written to disk will be Precision

rounded so as to fit into 6 bytes.

It is also important how an expression is factored. Factorization is under factorization
B listcontrol of the user through the B list. In the output store, the terms are stored

precisely as they are printed:

132 XIX. Handling Large Problems

head1 * (tail11 + tail12 + . . .) + head2 * (tail21 + . . .)
+ . . .

Without factorization, much more space would be used:

head1*tail11 + head1*tail12 + . . .

Too much factorization is also wasteful:

head1 * (tail1) + head2 * (tail2) + . . .

3. Tuning Facilities

A number of facilities have been provided for tuning large problems.

Notable among them is that one can execute a “dry run.” In a dry run,Dryrun

Schoonschip writes no files, and simply discards any full output store. Esti-
mates of the necessary time and disk space are printed out. The disk space
estimate is for the minimum needed (i.e., only one output file to be used).
There is an option to print a limited number of output terms, so one can
inspect for optimal factorization.

If more than one device is available for storage, then it may be desirable to
split up the output files over different devices or directories. That can be done
with the Directory statement, described in the next chapter, which uses theDirectory

file naming system described at the end of Section 1.

Finally, the maximum size of subfiles can be specified.Maximum

4. Freeze Statement

A useful tool for handling large problems is the Freeze statement. SupposeFreeze

some further work needs to be done on a large common file, and in particular
suppose the work is to be done only on certain factors. If the file has, say
10,000 terms, then the work has to be done 10,000 times. To cut down the
amount of work as well as the size of the problem, the following can be done.

First, when producing the Z file, specify those factors that are to be worked
on in the B list. For example, if an expression must be integrated over someB list
variable x, with X1, X2 and X3 denoting x-dependent factors:

Common xfile

B x,X1,X2,X3

4. Freeze Statement 133

Z xfile = . . .
substitutions, commands
*begin

The result will be of the form:

xfile = x * (terms1) + x^2 * (terms2) + X1 * (terms3)

+ . . .

There may be many terms inside the brackets. As the Z file must be a common
file, it now resides on disk. The statement Freeze

Freeze xfile

(placed after the *begin line) produces the following result. The common *begin

file xfile is read and split up into one main file and possibly many “frozen”
subfiles. The main file will still be called xfile, and is as follows: DF

xfile = x * DF(xfile,1) + x^2 * DF(xfile,2)

+ X1 * DF(xfile,3) + . . .

The subfiles are denoted by x_file:

x_file(1) = terms1

x_file(2) = terms2

x_file(3) = terms3

. . .

Frozen subfiles are not directly accessible like other files. They may be referred
to only by means of the DF function. There is a command, Expand, that allows DF

substitution of the subfile for the DF function. For example, Expand

Z xx = DF(xfile,3)

Id,Expand,xfile

*end

will produce the contents of x_file(3) for xx. This may also be used to
restore the common file to its original shape:

Common xfilp

B x,X1,X2

Z xfilp = xfile

Id,Expand,xfile

Delete xfile

*begin

134 XIX. Handling Large Problems

The new common file xfilp will be precisely the same as the original xfile.
Deleting (but not replacing) a frozen main file causes the deletion of all frozen
subfiles.

It should be clear that work on the frozen main file xfile will be much less
voluminous, since it will have many fewer terms. After the work has been done,
one can reestablish the complete common file by using the Expand command.

Freeze is a powerful tool, but it must be used with some care. An impor-
tant point is that file arguments are not, repeat not, transferred to the subfiles.
For example, defining

Z xfile(a1,a2) = . . .

and then freezing xfile results in a number of subfiles. If we now use xfile

with different arguments,

Z ha = xfile(mu,nu)

and then expand the subfiles, we do not replace a1 and a2 in the subfiles by
mu and nu. Thus, as a general rule, files that are to be frozen should not have
arguments.

Created summation indices are particularly tricky here. It can happen that
one of a pair of indices appears outside of a parenthesis, and that the other
appears inside and becomes part of a frozen subfile. Since Schoonschip often
renames summation indices, the outside index may get renamed, while the
one inside stays the same, giving an erroneous result. This kind of “splitting”
of repeated indices is thus to be avoided when files are to be frozen. See the
discussion of the All command in Chapter XII, Substitution Commands, forAll

a way to avoid this problem for indices created by that command.

Chapter XX

File Handling Statements

This chapter assumes that the reader is familiar with the preceding chapter
on handling large problems. Like all statements, the statements described
below may be in upper or lower case, and only the first two characters (three
if confusion is possible) are significant.

To specify traditional sorting: Traditional

Traditional

The default method in effect for any particular version of Schoonschip is a
matter of local experience.

To specify the new sorting method: Large

Large #

where # is a number in the range 1 to 5 inclusive. It specifies the number of
output files to be used. The default is currently 2.

To specify the maximum size of subfiles: Maximum

Maximum #

where # is the maximum subfile size in bytes. The default is 110,000.

For each of the subfiles a directory prefix may be specified. One may either
specify a collective prefix for all subfiles regardless of the first number (6-F),
or specify individual prefixes. Here is the syntax: Directory

Directory #1,prefix1,#2,prefix2,#3,prefix3, . . .

For any subfile, the number designating the subfile is compared with the chain
of numbers above, which must be in ascending order. The prefix between the

135

136 XX. File Handling Statements

two numbers (including the first but not the second) whose range includes the
file number will be used. If the number is less than 1000 hex (= 4,096), then
only the last three hexadecimal digits of the file number are used, otherwise
all four are used. The prefix is simply glued in front of the name TAP. . . , as
described in the previous chapter. The special notation . (just one period)
means no prefix.

If present, the Directory statement must be the very first in any Schoon-first statement
schip program, and it must be in the *fix section.*fix

It should be recalled that Schoonschip accepts hexadecimal numbers ac-hexadecimal
notation cording to the notation 0x . . . , where . . . are hexadecimal digits. For example,

0x100 is the same as 256.

Here is an example:

Directory 0,/usr/tmp/,10,/user1/tmp/,100,.

Files TAPx000L through TAPx009L are prefixed with /usr/tmp/; for example,

/usr/tmp/TAP6000L

Files TAPx00AL through TAPx063L are prefixed with /usr1/tmp/. Files
TAPx0064L and up get no prefix. There is a collective sharing of directories;
for example, TAP6001L and TAPB001L get the same prefix.

Another example:

Directory 0x4000,/usr/tmp/,0x6000,.,0xB000,/usr/tmp1/

Here the prefix /usr/tmp/ is assigned to files TAP4yyyL and TAP5yyyL. Files
TAP6yyyL through TAPAyyyL get no prefix, and files TAPB000L and up get
/usr/tmp1/. Files TAP0yyyL through TAP3yyyL (not yet used) get no prefix.

The default is no prefix.

The old statementOutlimit

Outlimit #

specifies the maximum total number of bytes of disk space that can be used.
Default: 500,000.

To get information on the size of the various files being written, use the
statement:Showlength

Showlength

That causes Schoonschip to print the total size and the name of the last subfile,
after completion of the file. The statementNshow

XX. File Handling Statements 137

Nshow

Switches off Showlength.

The statement Dryrun

Dryrun #

causes Schoonschip to do a dry run as described in the previous chapter. Here
specifies the maximum number of terms to be printed. If # is 0 or absent,
no dry run is made. This statement may also appear after a *yep. *yep

Chapter XXI

R Input

Sometimes one wants to work on very large input expressions, larger than
Schoonschip can accommodate in its input space. The R input facility is de- R input
signed specifically for that purpose. More precisely, it is geared towards input
that has exactly the same form as normal Schoonschip output. R input for one
problem can be prepared by editing text output from another problem. Put
an R in column 1 of the line containing the file name; Schoonschip will read
what follows and transform it into the format that *yep uses. After a *yep *yep

the expression can be worked on.

As an example, consider a case where a previous problem has produced the
output

xxx = + [b-a]^-1

* ([x+a]^-1 - [x+b]^-1) + 0.

To ensure that all symbols retain the same meaning in the new problem, specify
the P lists option in the problem that produces the output; and include the P lists

resulting lists with the new input. Then put an R in column 1 and a blank in
column 2 of the line containing the file name xxx:

A i=i, [b-a], [x+a], [x+b]

F D, Epf=i, G=i, Gi, G5=i, G6=c, G7, Ug=c, Ubg, DD,

DB, DT, DS, DX, DK, DP, DF=u, DC

R xxx = + [b-a]^-1

* ([x+a]^-1 - [x+b]^-1) + 0.

*yep

139

140 XXI. R Input

Id,[b-a]^-1=bma

*end

There is no limit on the length of the expression other than available disk
space.

R input can be very useful for editing expressions or processing parts of
large expressions. It can also be used effectively for comparing outputs. To
do that, put the second expression after the first, but put an M (for minus) inM

column 1 rather than an R:

A i=i, [b-a], [x+a], [x+b]

F D, Epf=i, G=i, Gi, G5=i, G6=c, G7, Ug=c, Ubg, DD,

DB, DT, DS, DX, DK, DP, DF=u, DC

R xxx = + [b-a]^-1

* ([x+a]^-1 - [x+b]^-1) + 0.

M xxx = + [b-a]^-1

* ([x+a]^-1 - [x+b]^-1) + 0.

*yep

B [b-a]

*end

Chapter XXII

Summary

The Schoonschip declarations, statements, commands and built-in functions
are summarized in this chapter, and collected into functional groups.

1. Comments

Lines with a C in column 1 (excluding Common) are comment lines. Lines
with a blank in column 1 are taken to be continuation lines, including C

line continuations.

Lines with a ~ in column 1 are ignored.

A ! signals the start of comments on a line, but is otherwise treated as the
end of the line.

2. Program Sections

A * in column 1 terminates a program section and tells Schoonschip to start
execution or go on to next section.

*fix If present, this must be the first section. It includes declarations
that persist until *end.

*yep All names, but not expressions in brackets, are kept over a *yep.

*next The same as *yep, except that local files not mentioned in a
Keep list are deleted.

*begin All except fix’d quantities and common files are deleted.

*end Signals the end of the input.

141

142 XXII. Summary

3. Blocks and Do-Loops

BLOCK Name{arg1,. . . }
Defines block Name. Arguments are embedded in the text between ’ ’.
Call: Name{brg1, . . . } Name must start in column 1. If an argument
contains commas it must be enclosed in { }. Nesting: Schoonschip
strips away one layer of { }’s at a time.

ENDBLOCK

DO L1=#1,#2,#3

The optional #3 is taken to be 1, if absent. In-text argument L1 must
be between ’ ’. Forced exit from a do-loop at a * line is controlled by
the Dostop flag, which is off by default. See the Dostop statement and
substition command.

ENDDO

4. Declarations

A a1,a2=x, ... Algebraic symbol list. If x is a number,
then powers of a2 greater than or equal
to x are set to zero. Alternatively x may
be c, r or i, denoting reality properties.
The default is r. Constructions such as
a2=3=c are allowed.

Anti TX Define character table TX to contain the
default antiparticle list. May appear in a
*fix section.

B b1,b2, . . . List of symbols to be factored out in the
output. Symbols, vectors, dot products,
vector components are legal. If a vector
name is mentioned, all dot products and
vector components referring to that vec-
tor are factored out.
B Excl, . . . option for a list of the only
symbols and functions to be factored out.

D Name(n,. . .)=xpr1,xpr2, . . . Data expressions. Each expression must
be a single term.

F f1,f2=x, . . . Function list. Reality properties are spec-
ified by x, which may be i,c,r or u. The
default is r.

5. Statements 143

I i1,i2=d, . . . Index list. The dimension d may be a
number or a single character algebraic
variable, previously defined in an A list.

Sum i1,i2, . . . Summation index list. These are not re-
lated to the summation indices of the DS

function, but to indices that appear twice
according to the Einstein summation con-
vention. Indices in this list must have
been defined before.

T Name(n, . . .)=sy1,sy2, . . . Table.

T Name: "X=1:1, . . . Character table.

V p1,p2=z, . . . Vector list. Names must be 1 or 2 char-
acters. The optional =z implies that p2

is to be set to zero as soon as it occurs,
whether as a vector component or in a
dot product.

X Name(arg1, . . .)=xpr X expression.

Z Name(arg1, . . .)=xpr Z expression. If arg1 is a number or sim-
ple numerical expression, Name is a sub-
scripted file. The number must be in the
range 0 to 32,767. Here a simple numer-
ical expression may contain numbers, or
block or do-loop arguments that become
numbers, separated by +, -, * or /.

5. Statements

Blocks:

BDELETE name1,name2,. . . Delete blocks name1,

Do-Loops:

Dostop on Sets the Dostop flag on, to force exit from a do-loop at a *

line. Dostop off clears the flag to its default off condition.
See the Dostop substitution command, and Chapter III, Input
Facilities. Tricky.

Numbers:

Digits # Set the number of digits to be printed for floating point
numbers.

144 XXII. Summary

Overflow off Suppress short number overflow error trapping. Reacti-
vate with Overflow on.

Precision # Set the precision to # digits for comparison and cancella-
tion of numbers in various situations. Default: 22 digits.

Rationalize # Set the precision to which a number and its attempted
rationalization must agree to # digits. The default is to
attempt rationialization with agreement to 22 digits. To
turn off rationalization, use 0 for #.

Round on Set conversion of numerical expressions in function ar-
guments from the default truncation mode to round to
the nearest integer. Round off reinstates the truncation
default.

Printing:

P options The first 2 characters are significant in the following options:
brackets

heads

input ninput

lists nlists

output noutput

statistics nstatistics

Lprinter Print output lines up to 130 characters.

Screen Print output lines up to 80 characters.

Z file manipulation:

In the name lists for these statements, the name of an indexed file may
appear without an index. In such a case the statement applies to all files
having that name.

Common name1,name2(5),name3, . . . Declare common files.
Delete name1,name2(5),name3, . . . Delete files.
Keep name1,name2(5),name3, . . . Keep local files over a *next.
Names name1,name2(5),name3, . . . Declare the name lists for quanti-

ties in common files, which have
been read previously from external
disk files by the Enter statement.

Nprint name1,name2(5),name3, . . . Do not print Z files.
Print name1,name2(5),name3, . . . Print Z files.

5. Statements 145

Common file input/output:

Enter cfile Enter common files contained in the disk file cfile. Must
be in the first section, terminated by *fix. There may be
several Enter statements in that section.

Write cfile Write common files to the disk file cfile. Must be isolated
in its own section, not a *yep section.

External file reading:

Read fname Start reading from external disk file fname. No Read state-
ments are allowed in the file fname.

End Switch back to normal input and close the external file. A
subsequent read of the same file starts again at the begin-
ning.

Fortran output:

Fortran #,Brackets, Set options for the output of Fortran state-
Compression,.,A ments. See Chapter XVIII, Statements, for

details.

Punch name1,name2(5), . . . Write to tape8 in Fortran compatible form.

Large problem management:

Directory #1,pre1, . . . Allocate subfile disk storage across file system
directories and devices. If present, must come
first in a Schoonschip program in a *fix sec-
tion.

Dryrun # Run the program and print a maximum of #

terms per result, but otherwise produce no out-
put files. Print an estimate of the time and disk
space required.

Freeze cfile For the common file cfile, work on only the
factors mentioned in a B list; and refer to the
remaining factors through the DF function. See
the command Expand for unfreezing.

Large # Specify that # (between 1 and 5) disk files are
to be used for output sorting and merging.

Maximum # Specify the maximum subfile size, in bytes, for
sorting and merging. Default: 110,000.

Nshow Turn off Showlength.

146 XXII. Summary

Outlimit # Change output limit in bytes for total disk space.
Default: 500,000.

Showlength Print the size and name of the last subfile used
in sorting, as it is completed.

Traditional Use the sorting method from earlier versions of
Schoonschip, which does not utilize fractured
files.

Miscellaneous statements:

Beep options Issue beeps at the terminal. All beeps cleared if no
option.

Options:
#,t Issue # beeps at termination.
#,* Issue # beeps after a section.
#,e Issue # beeps in case of error.

External fname Load user supplied machine executable file into mem-
ory. See command Extern.

M xxx = . . . Compare the expression xxx = . . . to a preceding line
of R input. Followed by *yep.

Oldnew a1=b1, Change name a1 into b1, etc.
a2= . . .

Progress Print dots to the terminal to show progress in process-
ing terms. Same as Progress on. Switched off by
Progress off.

R xxx = . . . Transform text output xxx = . . . from a Schoonschip
problem directly into input for *yep. Useful for long ex-
pressions that would normally overflow the input space.

Silence Turn off a mode on certain pc’s that waits for user
response.

Synonym a1=b1 Every occurrence of a1 between single quotes is replaced
by b1. The end of the range of validity of a set of
synonyms is defined by a Synonym statement with no
arguments. Up to 16 synonyms allowed.

6. Substitutions

The general structure of a substitution involves several elements from various
groups, separated by commas. Substitutions are often used with the condi-
tionals IF, AND, OR and their NOT versions, which we summarize in Section 7.

6. Substitutions 147

Id and Al:

The first group is Id or Al itself (possibly with ; instead of Al,), followed
by an optional number:

Id, Al, ; Id,#, Al,#, ;#,

The number specifies on how many levels the substitution or command is to
be applied.

Id Substitution or command on the next free Level.

Al Substitution or command on the same level. On a line starting with
Id, subsequent ;’s are read as Al,.

Keywords

The next group may contain one item, namely a keyword. Keywords are
only for substitutions involving patterns, not commands. Valid keywords are:

Multi Funct Dotpr Ainbe Adiso Always Once

This group may be empty.

Patterns and Commands:

The next group either defines a pattern followed by an = sign, or is a
command followed by arguments separated by commas (if any). Patterns are
products of factors, with dummies designated by a ~ following the symbol.
Not all factors can be dummies. See Chapter X, Patterns.

The available commands and their formats are:

Absol Force coefficient positive.

Addfa Add factor.

Id,Addfa,expression

All Collect vectors p into function F. Indices that are created may
be assigned a dimension.

First syntax:
Id,All,p,N,F

possibly followed by the character arguments "F_, "D_, and/or
"V_, which inhibit function argument, dot product or single vec-
tor inspection (example: Id,All,p,N,F,"F_).

Second syntax:
Id,All,F1,N,F

148 XXII. Summary

Collect all vector arguments of function F1 into F. Substitute
created indices as arguments of F1, and also as additional argu-
ments of F.

See Chapter XII, Substitution Commands, to avoid a problem
with renamed, “split” repeated indices and Freeze.

Anti Check function arguments for characters, and remove any trail-
ing underscore (_) present if the character is mentioned in the
antiparticle character table.

Id,Anti,TA

Asymm Rearrange the arguments of an antisymmetric function.

Id,Asymm,f1,2,3,4,f2,f3,4,5, . . .
Id,Asymm,F1:2,3,4:7,8,9:12,13,14: . . .
Id,Asymm,F1:1-3:7-9:12-14: . . .

Beep Generate a beep on the terminal.

Id,Beep

Coef Inspect numerical coefficient.

IF Coef,option

Options:
pl plus
ng negative
eq,# equal
lt,# less than
gt,# greater than
ib,#,# in-between

Commu Rearrange commuting functions.

Id,Commu,f1,f2,f3, . . .

Compo Compose names.

Id,Compo,<options>,f1,f2,<options>,f3,f4, . . .

Options: AFIVX with AFV possibly twice. "S_ suppresses sym-
metrization of the name. A character table may be specified, to
be used if characters with an underscore appear.

Count Count certain occurrences with certain weights.

Id,Count,xxx,arg1,#1,arg2,#2, . . .

If xxx is a number and the count is # then the term is kept if
#≥ xxx.

If xxx is a symbol or vector component or dot product then
xxx^# is made.

6. Substitutions 149

If xxx is a function or X or D expression then xxx(#) is made.
In that case a multiple count can also be done:

Id,Count,Fx,arg1,#,. . . ,# : arg2,#,. . . ,# : arg3,#,. . .

Now Fx(#1,#2,#3,. . .) is made with #1 determined by the ar-
guments up to the first colon, #2 by the arguments between the
first and second colon, etc.

Cyclic Function is invariant under cyclic permutation of its arguments.

Id,Cyclic,f1,2,3,4,f2,f3,4,5, . . .

Dostop Set or clear Dostop flag. Tricky, see Chapter III, Input Facilities.

Id,Dostop,on

Id,Dostop,off

Test Dostop flag:

IF Dostop

Id,Dostop

Epfred Reduce products of Epf functions.

Id,Epfred

Even Function is even in the signs of its arguments.

Id,Even,f1,2,3,4,f2,f3,4,5, . . .

Expand Expand frozen subfiles (appearing as DF(fname,#)).

Id,Expand,fname

Extern Jump to user defined routine.

Id,Extern,arg1,arg2, . . .

Iall Inverse of All.

Id,Iall,p,F

Id,Iall,F

Numer Insert numerical values.

Id,Numer,arg1,#1,arg2,#2, . . .

Odd Function is odd in the signs of its arguments.

Id,Odd,f1,2,3,4,f2,f3,4,5, . . .

Order Order functions on the basis of their first two arguments.

Id,Order,F1,F2, . . .

Print Print message a maximum of # times.

Id,Print,#,message

150 XXII. Summary

Ratio Rationalize.

Id,Ratio,xpa,xpb,bma

Stats Count passage in one of four counters (0-3). The result is printed
at the end.

Id,Stats,#

Symme Rearrange arguments of symmetric function.

Id,Symme,f1,2,3,4,f2,f3,4,5, . . .
Id,Symme,F1:2,3,4:7,8,9:12,13,14: . . .
Id,Symme,F1:1-3:7-9:12-14: . . .

Particle Physics Commands:

Three commands are specialized for problems of relativistic quantum me-
chanics. See Chapter XV, Particle Physics, and Chapter XVII, Gamma Alge-
bra.

Gammas Collect, reduce and/or take the trace of products of G’s.

Id,Gammas,options,L1,L2-L3:options,
Trace,L3,L4-L5:options, . . .

Options are designated by characters:
"C do collection and normalization only
"N normalize
"A anomalous trace
"S do sum splitting
"U unify strings
"I do index pair reduction
"i do index pairs in "_-type strings
"P do P tricks
"W do final work

Each option except "C may be followed by an underscore, which
switches it off. The "C option when not combined with any-
thing else gives normalization, but with no specialization to
four dimensions (essential if there are vectors that are not four-
dimensional).

Default: "N, "A_, "S, "U_, "I, "i, "P, "W

Spin Replace pairs of Ug, Ubg by spin summation expression. The
spinors may be defined by loop indices or vectors.

Id,Spin,L1,p, . . .

Ndotpr Create special dot products. Closely related to Gammas com-
mand.

Id,Ndotpr,F1

7. Conditional Substitutions 151

7. Conditional Substitutions

Conditionals are used with substitution patterns and commands according to
the following structure (square brackets denote optional elements and are not
included in the syntax):

IF [NOT] pattern [= expression] or command
[AND] [NOT] pattern [= expression] or command
[OR] [NOT] pattern [= expression] or command
substitutions
[ELSE
substitutions]
ENDIF

The above lines all begin in column 1, with the exception of lines with a dot (.)
in column 1, which can be used for indentation to show nesting. Conditional
structures may be nested up to a depth of 8.

Substitutions are not allowed between IF, AND and OR statements when
there is an ELSE; furthermore AND and OR statements are not allowed after an
ELSE, except as part of a new, nested structure. See Chapter XI, Conditional
Substitutions, for the filtering rules for successive AND/OR statements.

8. Built-In Functions

General purpose:

D Delta function.

DD Internal purposes (used to represent X and D expressions and files).
DS Summation function.

Format:
DS(J,j1,j2,(xpr1),(xpr2))

Here xpr2 is numeric, optional. The sum over the given range is
constructed. The numerical coefficient is found by recursion, using
xpr2. The first coefficient is 1.

Example:
e^x = DS(J,0,20,(x^J),(1/J)) + O(x^21).

Caution: summation symbols such as J may be used only once in a
given expression.

Character summation:
DS(C1;C2; . . . ;Sym;C3;C4;TX, . . . ,2:4,7,(xpr))

152 XXII. Summary

Epf Antisymmetric Weyl tensor. May have any number of arguments.

Numerical functions:

These are used in expressions of numerical type, such as expressions oc-
curring as exponents, including negative exponents; but they may not used in
simple numerical expressions, such as Z expression indices:

DB(n) = n! DB with two arguments is word-bound, fails if n = 19,
DB(n,m) = n!/{m!(n − m)!} m = 8, 9, . . .

DT(n1,n2, . . .) 1 if all arguments positive or 0, else 0.

DK(n1,n2) 1 if n1 = n2, else 0.

DP(n1,n2, . . .) 1 if permutation to ascending order is even, else 0.
Normal order: −127, . . . , 0, . . . , +127. Vanishes if two
arguments are equal.

DF(xfile,#) The latter case is equivalent to the former with # =

DF(xfile,#1,#2) 100*#1 + #2.

DC(n1,n2, . . .) 1 if sum of all arguments is 0, else 0.
DC("X, . . .) "X is an option character which may be "C, "F, "T,

with or without a trailing underscore.

Particle physics:

Dirac matrices and spinors (use -m for antiparticle spinors):

G(L,mu) Ug(L,m,p)

Gi(L) Ug(L,mu,m,p)

G5(L) Ubg(L,m,p)

G6(L) = Gi(L) + G5(L) Ubg(L,mu,m,p)

G7(L) = Gi(L) - G5(L)

New notation:

G(i1,i2,mu,nu, . . . ,G6, . . .)
Gi(i1,i2) G5(i1,i2) G6(i1,i2) G7(i1,i2)

Internally generated G-strings:

G(L1,"s,"4,mu,nu, . . . ,G5, . . .) General 4- and N-dim’l mixture.
G(L1,"t,"4,mu,nu, . . . ,G5, . . .) General 4- and N-dim’l mixture.
G(L1,"S,"X,mu,nu, . . .) 4-dim’l. "X may be "4, "5, "6 or "7.
G(L1,"T,"X,mu,nu, . . .) 4-dim’l. "X may be "4, "5, "6 or "7.
G(L1,"s," ,mu,nu, . . .) N-4 dim’l.
G(L1,"t," ,mu,nu, . . .) N-4 dim’l.

9. Conditional Input 153

9. Conditional Input

The conditional input commands implement the selective reading of Schoon-
schip program text input, in the spirit of conditional assembler directives.
They are used with the 10 conditional input parameters, Sw0, . . . , Sw9. See
Chapter XIII, Conditional Input for more details.

Goto xpr Skip unconditionally until a program line with @ in col-
umn 1 is found, followed by the number which is the
value of xpr, or an @ in column 1 of an otherwise empty
line. The value of xpr must be 0, . . . , 99.

Gotoif xpr, Skip as in Goto if the condition xpr1 ? xpr2 evaluates
xpr1 ? xpr2 to true, where ? may be >, < or =, otherwise continue

with the next program line. The values of xpr1 and xpr2

must be signed, 16-bit numbers.

Gotoifn xpr, The same as Gotoif, except that skipping occurs when
xpr1 ? xpr2 xpr1 ? xpr2 evaluates to false.

Set SwX=xpr Set _SwX to the value of the byte-sized, signed numerical
expression xpr, where X = 0, . . . , 9.

Appendix A

Command Line Options

The standard usage is:

Schip file1 file2 options

Schoonschip input is read from file1, and the output is written to file2. Any
Fortran compatible output (Punch statement) is written to tape8. If file2 is
absent, then the output is written to the standard output, usually the screen.
If in addition file1 is absent, then the input is read from the standard input,
usually the keyboard. When using the keyboard for input, remember that
*end terminates a run. Errors also terminate a run. Schoonschip normally
echos input lines back to the screen.

The input, output and punch files can also be designated with the notation
i=, o= or f= (the f stands for Fortran compatible); upper case is accepted as
well:

Schip i=file1 o=file2 f=file3

This notation cannot be combined with the first method.

There are a number of options, any of which may be absent. Certain of
these are specified by a leading - sign. They are (upper case may also be
used):

s For versions of Schoonschip running on a pc with bitmapped screen.
The “Ready” line and the keyboard input request are suppressed if s
(for silence) is specified.

b Certain Fortran compilers do not accept negative exponents without
brackets (for example, A**-3). If b is specified, brackets are written.
The default is no brackets.

155

156 A. Command Line Options

p Show progress by printing a dot (.) to the standard output every 128
terms.

. Place a . after every integer in the output. Some Fortran compilers
insist on this.

Example:

Schip file1 file2 -b.p

Options b, . and p apply.

These options may also be selected from within a Schoonschip program by
means of the statements

Silence

Fortran options
Progress on

Progress off

These statements are discussed in Chapter XVIII, Statements.

Another option causes noise (ctrl g) to be sent to the terminal upon
completion of the program. This can be specified by b=#, where # is the
number of beeps the terminal is to receive.

The option S=#, where # is a number in the range −128 to 127 inclusive,
sets the initial value of the parameter _Sw0 to the value #.

Example:

Schip file1 file2 b=10 s=19

Upon completion 10 beeps will be sent to the terminal. The initial value of
_Sw0 is 19.

It is important that one can now specify Schoonschip’s memory usage.
There are two large storage areas used during execution, called the input space
and the output space. The input space contains expressions, substitutions,
etc. The output space is where the final result is collected. Performance for
large expressions is very sensitive to the size of the output store—the larger
the better. Because of its heritage from the old cdc days, Schoonschip has
always been very frugal in memory usage. The built-in sizes of the input and
output spaces used to be 20 kilobytes and 50 kilobytes, respectively. Given
that nowadays few machines have less than 1 megabyte of memory that seems
far too restrictive.

Versions since January 1, 1989 have been more expansive. To begin with,
about 80 kilobytes are used separately for buffers, etc. This used to be much

A. Command Line Options 157

less. Default sizes for the input and output spaces are machine dependent, but
typically they are 100 kilobytes and 250 kilobytes. The total memory usage
(excluding Schoonschip itself, which is about 100 kilobytes) comes to about
450 kilobytes.

The input and output sizes may now be specified on the command line. For
that purpose one uses the notation IS=# and OS=# (lower case also accepted)
where the #’s stand for numbers specifying the size in kilobytes. Thus the old
situation is obtained with this command line:

Schip file1 file2 IS=20 OS=50

Finally a number # preceded by a + sign can be specified on the command
line. Schoonschip then skips the first # problems in the input file. Every
occurrence of a *end line counts as one problem. Example:

Schip +5 Varia Out

Problem 5 in file Varia is executed.

Some other examples:

Schip Infil Outfil -bp

The file Infil is taken to contain the input, output is written to Outfil. Dots
are printed when starting a problem, and then after every 128 terms. Brackets
are placed around negative exponents.

Schip +1 i=Varia o=Vario -p

Problem 1 of Varia is executed, the output is written to Vario, and meanwhile
dots are written to the screen show progress.

Appendix B

Compatibility

Programs that worked with older M68000 versions of Schoonschip will still
work provided square brackets [] are taken out and replaced, for example, by
curly brackets { }. In addition there is a slight change in Integ (evaluation of
numerical expressions as function arguments). It now truncates, rather then
rounding to the nearest integer. The statement Round on may be used to
reinstate rounding (cdc versions of Schoonschip truncated).

The command Trick is now called Gammas, but is still accepted in its old
form. The block delete command DELETE (all upper case) has been replaced
by BDELETE (case insensitive, only the first four characters significant). The
rarely used statement Printer has been replaced by Lprint.

Programs that executed on previous cdc versions of Schoonschip will also
run with this version after minor, mainly cosmetic modifications. The major
differences are in the use of lower case characters in this version, and different
notations for block and do-loop arguments:

• Block arguments in the text of the block must be embedded in quotes.
The same holds for do-loop arguments. The latter can now take negative
values in all cases.

The use of { } is obligatory. Block arguments in a call may now have
commas provided they are enclosed in { }.

The word COPY is no longer needed when calling a block.

Block names may be at most 6 characters in length.

• The complex variable I is now written as i. The statement Oldnew i=I

can be used to take care of this.

• The S list is now the A list. S is, however, still accepted.

• ID and AL are now Id and Al. Both are accepted.

159

160 B. Compatibility

• GI is now Gi.

• CONJG and INTEG are now Conjg and Integ.

• Various keywords and commands sometimes have slightly different spell-
ings—ODDXX is now Odd.

• The Print options have a different format. For example, PRINT INPUT

is now P input.

• Dummies are now characterized by a trailing ~ instead of a +.

• An exponent may now also be denoted by ^ instead of **.

• The special function DX is no longer implemented. It is used internally
by the Gammas command.

• Characters as function arguments are denoted by "X instead of =X.

Index

Many Schoonschip program elements are listed in two or three different ways
in this index. Generally there is a list of subentries by symbolic name, with
page numbers only, under a general category such as “statements”. Each of
these is also usually listed separately by symbolic name, and by text name
when one exists, with more informative subentries.

; equivalent notation for Al,, 43
! comments, 6
"A gammas anomalous trace, 111

example, 119
"C gammas stop after collection, 110,

114
"I, "i gammas index pair elimina-

tion, 112
"N gammas normalization, 110
"P gammas vector pair elimination,

112
"S gammas sum-splitting, 111
"S, "T in gamma strings, 110
"U gammas string unification, 112
"W gammas final work, 113
" in gamma strings, 111
"s, "t, "4 in gamma strings, 109
*begin directive, 3, 39, 54

Freeze statement, 133
local files lost, 32

*end directive, 6, 39
common files, 32

*fix directive, 39, 54
Anti statement, 104
antiparticle tables, 103
Directory statement, 136
Enter statement, 39

only before, 33
Overflow statement, 14

Sum list, 18
*next directive, 39, 76

Keep statement, 33
local files, 31
not with Write statement, 33

*yep directive, 6, 31, 39
Dryrun statement, 137
fractured disk files, 131
large problems, 90, 92
more levels, 48
motivation, 90
not with Write statement, 33
P output statement, 38
R input statement, 139

* line, 3
= in patterns with conditionals, 57
=c, 14
=i, 14
=r, 14
=u, 20
=z, 15
character for literal integers, 4
$ illegal in names, 91
% prefix for minus sign, 9
~ and dummy arguments, 26
~ lines in blocks, 8

A compiler output, 124
A list declaration, 14

=c, 14

161

162 Index

=i, 14
=r, 14

absent factors in substitutions, 48
Addfa command, 58
Adiso (allow disorder) keyword, 48,

53
Ainbe (allow in-between) keyword,

48, 53
Al (also) substitutions, 43, 46

conditionals, 58
levels, 90
multiple, 43

Al, equivalent notation (;), 43
algebraic substitutions, 45
algebraic symbols

built-in, 21
rules, 14
types, real, imaginary, complex,

14
All command, 115

Dim argument, 118
predefinition of N, N , 117
problem when used with Freeze,

134
problem when used with Freeze

statement, 66
two syntaxes, 64

Always keyword, 52
function argument count, 47

ambiguous
index, 17
logical syntax, avoiding, 58

AND, 45, 57
anomalous trace "A gammas option,

111
example, 119

Anti command, 104
Anti statement, 70, 104

*fix, 104
anticommutation rule for gammas,

96
antiparticle spinor uses negative mass,

96

antiparticle table, 103
default, 104
*fix, 103
DS and Compo, 103

antiparticles and particles
characters for, 99

arguments
block, commas in, 8
character
All, Iall commands, 64
legal, 70
single, 18

composite nonnumerical to be
avoided, 20

D expression, 26, 27
Dim inserted by All command,

118
dummy, 26

automatic, 26
with ~, 26

essentially numerical in tables,
29

function, 18
count and Always keyword, 47

table, are automatic dummies,
29

Trace, for Gammas command, 114
vector, 13
X expression, 25, 27
Z expression, 26

arrays, rules for brackets, 29
Asymm command, ix, 66, 67
automatic dummy arguments, 26

table, 29

B list declaration, 4
130 quantities per line, 4
Exclusive option, ix, 4, 13
factor grouping, 4
Freeze statement, 132
functions implicitly on, 13
large problems, 131

Bdelete statement, x, 8, 123

Index 163

Beep statement, 68, 123
#,* option, 123
#,e option, 123
#,t option, 123

binomial function DB, 21
BLOCK, 7
blocks

~ lines, 8
commas in arguments, 8
names, 7
nesting (10 levels), 10
stored in tape9, 8, 10

brackets
curly, 13
in D arrays, 29
square, ix, 11
[] notation, 83
not usable as regular brack-

ets, x
substitution levels, 48, 90

built-in functions
D Kronecker delta, ix, 12, 16,

17, 21
DB binomial, 21
DB factorial, 21
DB, DT, DP, DK, DC numerical, 21
DC conservation, 22, 103
DF subfile, 133
DK numerical Kronecker delta,

22
DP permutation, 22
DS summation, 22

restriction, 23
DT theta, 22
Epf Weyl tensor, 20, 21
G, Gi, G5, G6, G7 gamma matri-

ces, 21, 95
Ug, Ubg Dirac spinors, 21, 95

built-in operators
Conjg, 15, 20, 30
Integ, 19, 29

built-in quantities, 21

C comment line, 3
case sensitivity, x, 4

command names, 62
character

arguments
All, Iall commands, 64
legal, 70

composition of graph vertices,
99

summation, vii, 101
Sym example, 105

table definition, 103
characters

loop indices, 115
particles and antiparticles, 99
single, as arguments, 18

Chisholm’s equation, 112
circuit example, 72
Coef command, 68

options, 68
eq agreement, 68

collecting terms, 90
collection, gammas, 109, 110

stop after "C, 110
command line, conditional input, 85
command name conventions, 62
commands, 41

Addfa, 58
All, 64, 66, 115, 117, 118, 134
Anti, 104
Asymm, ix, 66, 67
Coef, 68
Commu, 69
Compo, 70, 76, 97, 103
Count, ix, 74
Cyclic, 77
Dostop, 77
Epfred, 78
Even, 79
Expand, 79, 133
Extern, 80
Gammas, 61, 80, 95, 96, 113, 114
Iall, 64, 80, 116

164 Index

Ndotpr, 80, 118
Numer, 80
Odd, 79
Order, 81
Print, 82
Ratio, 83, 84
Spin, ix, 84, 96
Stats, 84
Symme, ix, 61, 77
Dostop, 9

commands, new, viii
commas in block arguments, 8
comments

!, 6
C line, 3

common files, 32
*end, 32
Enter and problem with sum-

mation indices, 34
indexed, 32

Common statement, 32, 123
Commu command, 69
commuting functions, 69
commuting variables, 12
complex algebraic symbol type, 14
complex conjugation, 14

Conjg operator
rules for functions, 20

non-u function with bracket ex-
pression argument, 20

Compo command, 70, 76
default antiparticle table, 103
diagrams, 97
options, 71
tables, 70

composite nonnumerical arguments
to be avoided, 20

conditional input
command line, 85
parameters, 85
statements
Gotoif, Gotoifn, 86
Goto, 86

Set, 85
conditional substitution, 44

Al, 58
indentation, 45
levels, 58
patterns with =, 57

conditionals, x
AND, 45, 57
ELSE, 44, 57
ENDIF, 44
IF, 44, 45, 57
NOT, 44, 45, 57
OR, 45, 57

Conjg operator, 15, 30
rules, 20
subtlety, 30

conjugation, complex, 14
Conjg operator rules, 20
non-u function with bracket ex-

pression argument, 20
conjugation, gammas, 96
conservation function DC, 22
consolidation of loop indices, 109
continuation lines, 3
conventions

command names, 62
index, 17

correspondence of dummies, 48
forcing, 27
rules, 27

cos series, 25
Count command, ix, 74

selecting powers, 74
curly brackets, 13
Cyclic command, 77

D expressions, 26
arguments, 26, 27
printing the nesting depth, 35
rules for brackets, 29

D Kronecker delta function, ix, 12,
16, 21

Index 165

illegal in substitution pattern,
46

linearity, 21
rule with vectors and numbers,

17
DB binomial function, 21
DB factorial function, 21
DB, DT, DP, DK, DC, numerical func-

tions, 21
DC conservation function, 22, 103
declarations, 11

A list, 14
B list, ix, 4, 13
I list, 16
F list, 20
Sum list, 18

defaults
algebraic symbol type (real), 14
antiparticle table, 104
*fix, 103
DS and Compo, 103

exponent Overflow message (on),
x, 14

floating point output Digits (5),
5

functions (noncommuting), 12
Gammas command, 114
line output length (80), 37
maximum subfile size (110,000),

135
names and types, 13
numerical dimension (4), 16
output file size (0.5MB), 35
Precision (25), 5
Rationalization (22), 5
Round (off), ix, 19
short number overflow, x
sorting output files (2), 135

DELETE obsolete statement, x
Delete statement, 33, 123
determinants

3 × 3, 26, 27
n × n, 28

DF subfile function, 133
diagrams, Compo command, 97
Digits statement, 4, 123

floating point output default (5),
5

Dim argument inserted by All com-
mand, 118

dimension, values for numerical, 16
dimensions, other

for indices only, 107
loop momenta, 107

Dirac spinor functions Ug, Ubg, 21
directives

*begin, 3, 32, 39, 54
*end, 6, 32, 39
*fix, 14, 18, 33, 39, 54
*next, 31, 33, 39
*yep, 6, 31, 33, 38, 39, 48, 90

Directory statement, 123, 132, 135
must be first and in *fix, 136
needs hexadecimal, 5

disk files, fractured, 130
*yep, 131

DK numerical Kronecker delta func-
tion, 22

DO, 8
do-loop

forced exit, 9
nesting (10 levels), 10

Dostop command, 9, 77
Dostop statement, 9

on, off, 124
dot products, 12

dummies for, 27
rules, 14

Dotpr keyword, 47, 53
double quotes illegal as block argu-

ment delimiters, 7
DP permutation function, 22
Dryrun statement, 124, 137

*yep, 137
large problems, 132

DS summation function, 22

166 Index

default antiparticle table, 103
restriction, 23

DT theta function, 22
dummies, 41

for dot products, 27
for functions, 47, 72
for short numbers (integers), 27
for vector components, 27

dummy arguments, 26
automatic, 26
correspondence, 27

forcing, 27
rules, 27

repeated, 46, 51
with ~, 26

dummy correspondence, 48

efficiency, sorting and output store
size, 131

ELSE, 44
optional, 57

End statement, 10, 124
ENDBLOCK, 7
ENDDO, 9
ENDIF, 44
Enter statement, 33, 124

only before *fix, 33, 39
problem with common files and

summation indices, 34
Epf Weyl tensor function, 20, 21

linearity, 21
reality, 20

Epfred command, 78
equivalent notation, ; for Al,, 43
essentially numerical expressions, 14,

18
arguments in tables, 29
Keep files, 18

Even command, 79
examples

"A anomalous trace, 119
character summation
Sym, 105

circuit, 72
determinant, 26, 27
large power series, 93
muon decay, 97
substitution levels, 91
W boson self-energy, 100

examples file, 1
Exclusive option for B lists, ix, 4,

13
exit, forced do-loop, 9
exp series, 25
Expand command, 79, 133
exponentiation, 3
exponents, 5, 12, 14

addition not circular, x
negative, not for expressions, 83
not allowed for functions and vec-

tors, 13
expressions

conditional Goto, 86
D, 26

arguments, 26, 27
rules for brackets, 29

essentially numerical, 14, 18
Keep files, 18

file index, 32
no negative exponents, 83
simplifying, 32
T (table), 29
X, 25

arguments, 27
number of (500), 26
order of definition, 25
rules for arguments, 25

X, D and T, printing the nesting
depth, 35

Z, 3
arguments, 26

Extern command, 80
External statement, 80, 124

F list declaration
=u, 20

Index 167

factorial function DB, 21
factorization

functions and vectors, 13
large problems, 131

factors
absent in substitutions, 48
terms, 29

files
common, 32
*end, 32
indexed, 32
problem with Enter and sum-

mation indices, 34
expressions for indices, 32
fractured disk, 130
*yep, 131

local, 31
*next, 31
indexed, 32
lost after *begin, 32

output, number for sorting, 135
Z, 31

indexed, 32
printout, 37

final work "W gammas option, 113
floating point Digits output state-

ment, 5
forced do-loop exit, 9
forcing dummy correspondence, 27
Fortran output statement, 124
Fortran Z-file printout, Punch, 37
fractions, 5
fractured disk files, 130

and *yep, 131
Freeze statement, vii, 79, 124, 132,

133
*begin, 133
B list, 132
problem when used with All,

66, 134
Funct keyword, 47, 53, 54
functions

argument count and Always key-
word, 47

arguments, 18
commuting, 69
dummy, 47, 72
factorization, 13
names in substitutions, ix
noncommuting default, 12
order

in substitutions, 48
with symbols, 13

real, imaginary, complex, unde-
fined conjugation, 15

undefined conjugation type u, 20

G, Gi, G5, G6, G7 gamma matrix func-
tions, 21, 95

G-strings, 96, 110
gammas

algebra, vii, 107
anticommutation rule, 96
collection, 109, 110

stop after "C, 110
conjugation, 96
G, Gi, G5, G6, G7, 21
G-strings, 96
loop selection, 110
loops, specific, 114
n-dimensional, vii, 96
normalization, 109
notation

loop indices, 108
new, 95, 108
new compared to old, 95

options
"A anomalous trace, 111
"I,"i index pair elimination,

112
"N normalization, 110
"P vector pair elimination, 112
"S sum-splitting, 111
"U string unification, 112
"W final work, 113

168 Index

ordering, 108
rounding up, 109
strings
"S, "T, 110
" , 111
"s, "t, "4, 109
manipulations on, 110
pure, 111
traces, 108
unification, 112

Gammas command, 61, 80, 95, 96,
113

options, 113, 114
"C stop after collection, 114
default, 114

Trace argument, 114
Goto conditional input statement,

86
expressions, 86
logical operators, 86

Gotoif, Gotoifn conditional input
statements, 86

graph
lines (propagators), 100
vertices, 99

grouping terms, 4

hexadecimal notation, 5, 136

I list declaration, 16
numerical dimensions, 16
symbolic dimensions, 17

Iall command, 80, 116
two syntaxes, 64

Id substitution level, 90
Id substitutions, 42

a^ n=, 46
a^ n~=, 46
Always,f(. . .)=, 47
D(. . . , . . .)=, 46
Dotpr,f1,f2,. . . ,p(mu~)=, 47
Dotpr,p(mu~)=, 47
Funct,a=, 46

Funct,f1,f2, . . . ,a=, 46
Funct,f1,f2,. . . ,p(mu~)=, 47
Funct,p(mu~)=, 47
Multi,a^ n=, 46
Once,a^ n=, 46
p(mu)=, 47
p(mu~)=, 47

IF, 57
nesting (8 levels), 45, 57

illegal
$ in names, 91
double quotes as block argument

delimiters, 7
imaginary algebraic symbol type, 14
indentation of substitution condition-

als, 45
index pair elimination gammas op-

tions "I, "i, 112
indexed files

common, 32
local, 32
Z, 32

indices, 12
ambiguity, 17
conventions, 17
file, 32
loop

characters as, 115
consolidation, 109
new notation, 108
numbers, 108
range, 114

other dimensions, 107
pairs, gamma sum-splitting, 111
range, 16

symbolic, 17
rules, 14

input parameters, conditional, 85
input redirection by *yep, 6
input statement R

*yep, 139
P lists, 139

Integ operator, 19, 29

Index 169

integers, 5
character for literal, 4
short, 12, 19
short-short, 13

integration
by parts, 43
polynomial, 58

internal number representation, 4
internal order

numbers, 63
types, 63

Kahane algorithm, 112
Keep statement, 31, 33, 39, 76, 125

*next, 33
essentially numerical expressions,

18
keywords

Adiso, 48, 53
Ainbe, 48, 53
Always, 47
Dotpr, 47, 53
Funct, 47, 53, 54
Multi, 44, 52
Once, 53
Always, 52
Multi, 52

Kronecker delta function D, ix, 12,
16, 21

linearity, 21
rule with vectors and numbers,

17

large power series example, 93
large problems

*yep, 90, 92
B list, 131
Dryrun statement, 132
factorization, 131
multiplications, terms, 92
number format, 131

Large statement, 125, 129, 135
legal character arguments, 70

levels, substitution, 44, 89
*yep for more, 48
Al, 90
brackets, 48, 90
commands, 61
conditionals, 58
example, 91
Id, 90
limit (40), 48
options, 90
printout, 90
required by X expressions, 91

limits
B line, 130 quantities, 4
block and do-loop nesting (10

levels), 10
IF’s (8 levels), 45
line length for substitutions (150),

43
output file size (0.5MB), 35
substitution levels (40), 48
X expressions (500), 26
Z files (ca. 200), 31

linearity of D and Epf, 21
lines

*, 3
C comment, 3
continuation, 3
length for substitutions (150 char-

acters), 43
literal integers, # character, 4
local files, 31

*next, 31
indexed, 32
lost after *begin, 32

logical operators in conditional Goto,
86

logical syntax
avoiding ambiguous, 58
rules, 57

long names, ix, 11
loops, gamma

indices

170 Index

characters as, 115
consolidation, 109
new notation, 108
numbers, 108
range, 114

momentum in other dimensions,
107

reserving index ranges, 108
selection, 110
specific, 114

Lprinter line output statement, x,
37, 125

M compare input statement, 125, 140
manipulations on gamma strings, 110
Maximum statement, 125, 135

subfile size, 132
memory, output size and sorting ef-

ficiency, 131
merge time, 130
minus sign, % prefix for, 9
momentum, loop, other dimensions,

107
Multi keyword, 44, 52
multiple also substitutions, 43
multiplications, terms

large problems, 92
performance, 92

muon decay example, 97

N, N predefinition for All command,
117

n-dimensional gamma matrices, vii,
96

N in gamma sum-splitting, 111
names

$ illegal in, 91
block, 7
command, conventions, 62
do-loop, 8
function, in substitutions, ix
graph vertex, 99
long, ix, 11

subfiles, 131
symbols, 11

Names statement, 34, 125
Ndotpr command, 80, 118
negative exponents not for expres-

sions, 83
nesting

blocks and do-loops (10 levels),
10

IF’s (8 levels), 45, 57
printing the depth for X, D and

T expressions, 35
table entries, 29

new
commands, viii
gamma loop notation, 108
sorting method, vii, 129, 135
statements, viii

non-u function, with bracket expres-
sion argument, 20

noncommuting quantities (functions),
12

normalization, gammas, 109
"N option, 109, 110

NOT, 44, 45, 57
notation

equivalent, ; for Al,, 43
gamma

loop indices, 108
new, 95
old, new compared, 95

hexadecimal, 5, 136
square brackets [], 83

Nprint Z-file printout statement, 37,
125

Nshow statement, 125, 136
number of sorting files (Large state-

ment), 135
numbers

character for literal, 4
format, 5

large problems, 131
integers, 5

Index 171

short, 12, 19
short-short, 13

internal order, 63
internal representation, 4
loop indices, 108
truncation, 15

Numer command, 80
numerical dimension values, 16
numerical expression, essentially, 14,

18
Keep files, 18

numerical functions, built-in, DB, DT,
DP, DK, DC, 21

numerical Kronecker delta function
DK, 22

obsolete statements
DELETE, x
Printer, x

Odd command, 79
Oldnew statement, 15, 125
Once keyword, 53
options

Beep statement
#,*, 123
#,e, 123
#,t, 123

Coef command, 68
eq agreement, 68

Compo command, 71
Exclusive for B lists, ix, 4, 13
gammas
"A anomalous trace, 111, 119
"C stop after collection, 110,

114
"I, "i index pair elimination,

112
"N normalization, 110
"P vector pair elimination, 112
"S sum-splitting, 111
"U string unification, 112
"W final work, 113

Gammas command, 113, 114

Order command, 81
OR, 45, 57
order

functions in substitutions, 48
gammas, 108
internal

numbers, 63
types, 63

symbols and functions, 13
variables, 3
X expression definitions, 25

Order command, 81
options, 81

other dimensions
for indices only, 107
loop momenta, 107

Outlimit statement, 35, 125, 136
output

A compiler, 124
file size limit, 35
files, number for sorting, 135
Fortran, 124
splitting over directories, 132
store, 89

size and sorting efficiency, 131
text file, 2

Overflow statement, x, 12, 14, 125
*fix, 14

overriding reality types, 15

P lists with R input, 139
P statement options, 125

lists, 13
brackets, 37, 49, 91
heads, 37

nonpersistent, 38
input, 10, 37
lists, 35, 37, 139
ninput, 10, 37
nlists, 37
noutput, 37
nstats, 37
output, 5, 37

172 Index

*yep, 38
stats, 37, 92

pairs, index, gamma sum-splitting,
111

parameters
conditional input, 85
vertex, 99

partial integration, 43
particles and antiparticles

characters for, 99
patterns

a, 53
a^ n, 52, 53
a^ n*. . . f1(mu,b,. . .), 53
f1(a~,b~,. . .), 52
f1(mu,a,b~,. . .), 53
mu, 53
p(mu), 52
p(mu~), 52–54
p(n), 53
pDq, 53
pDq^ n, 52, 53

patterns in conditionals with =, 57
performance

merging, 130
multiplications, terms, 92

permutation function DP, 22
polynomial integration, 58
power series, large, example, 93
power truncation, 15
powers, selection with Count com-

mand, 74
Precision statement, 4, 68, 125,

131
default (25), 5

Print command, 82
Print Z-file printout statement, 37,

125
Printer obsolete statement, x
printout substitution levels, 90
program structure, 39
Progress statement, 126
propagators (graph lines), 100

Punch Z-file Fortran printout state-
ment, 37, 126

pure gamma strings, 111

quotes
double, illegal block argument

delimiters, 7
single, and block arguments, 7

R input statement, 126
*yep, 139
M, 140
P lists, 139

range
index, 16

symbolic, 17
loop index, 114

reserving, 108
Ratio command, 83

short number difference, 84
Rationalization statement, 4, 126

default (22), 5
Read statement, 10, 33, 126

restriction, 10
real algebraic symbol type, 14
reality

Epf function, 20
overriding, 15

redirection of input by *yep, 6
repeated dummies, 46, 51
reserving loop index ranges, 108
Round statement, 19, 126

default (off), ix, 19
rounding up gammas, 109
rules

algebraic symbols, 14
arguments for X expressions, 25
brackets in D arrays, 29
complex conjugation of functions,

20
D with vectors and numbers, 17
dot products, vector components,

indices, 14

Index 173

dummy correspondence, 27
exponents, 13, 14
functions and vectors, 13
logical syntax, 57
substitution, left-hand side, 51
Sum list, 18
table entries, 29, 30
vector algebra, 16
vectors, 12

Screen line output statement, 37,
126

selecting powers with Count com-
mand, 74

self-energy
W boson, 100

series
cos, 25
exp, 25

Set conditional input statement, 85
short numbers (integers), 12, 19

difference in Ratio command,
84

dummies for, 27
short-short numbers (integers), 13
Showlength statement, 126, 136
sign, % prefix for minus, 9
Silence statement, 126
simplifying expressions, 32
single quotes and block arguments,

7
size

50,000 terms is a big expression,
35

output file limit, 35
output store, and sorting effi-

ciency, 131
problems
B list, 131
Dryrun statement, 132
factorization, 131
number format, 131

subfiles, Maximum statement, 132,
135

sorting
new, vii, 129, 135
number of output files, 135
output, vii

store size and efficiency, 131
traditional, 129

Spin command, ix, 84, 96
spinors, 95

spin 3/2, 97
splitting output over directories, 132
square brackets, ix, 11

[] notation, 83
not usable as regular brackets,

x
statements

Anti, 70, 104
Bdelete, x, 8, 123
Beep, 68, 123
Common, 32, 123
Delete, 33, 123
Digits, 4, 5, 123
Directory, 5, 123, 132, 135, 136
Dostop, 9, 124
Dryrun, 124, 132, 137
End, 10, 124
Enter, 33, 34, 39, 124
External, 80, 124
Fortran, 124
Freeze, vii, 66, 79, 124, 132–

134
Keep, 18, 31, 33, 39, 76, 125
Large, 125, 129, 135
Lprinter, x, 37, 125
Maximum, 125, 132, 135
M, 125, 140
Names, 34, 125
Nprint, 37, 125
Nshow, 125, 136
Oldnew, 15, 125
Outlimit, 35, 125
Overflow, x, 12, 14, 125

174 Index

Precision, 4, 5, 68, 125, 131
Print, 37, 125
Progress, 126
Punch, 37, 126
Rationalization, 4, 5, 126
Read, 10, 33, 126
Round, ix, 19, 126
R, 139
R input, 126
Screen, 37, 126
Showlength, 126, 136
Silence, 126
Synonym, 86, 126
Traditional, 127, 135
Write, 33, 127

statements, new, viii
statements, obsolete

DELETE, x
Printer, x

Stats command, 84
stop after gammas collection "C op-

tion, 110
strings, gamma

"S, "T, 110
" , 111
"s, "t, "4, 109
manipulations on, 110
pure, 111
traces, 108
unification, 112

structure, program, 39
subfile

function, DF, 133
names, 131
size, Maximum statement, 132, 135

substitutions, 41
absent factors, 48
Al (also), 43, 46

levels, 90
multiple, 43

algebraic, 45
command syntax, 61
function names, ix

levels, 44, 89
*yep for more, 48
brackets, 48
commands, 61
limit (40), 48
options, 90
printout, 90

line length (150), 43
order of functions, 48
rules, left-hand side, 51
vector, 47

Sum list declaration, 18
*fix, 18

sum-splitting, gammas
"S, 111
N , 111
index pairs, 111

summation
character, vii, 101
Sym example, 105

convention, 12
indices, problem with Enter’ing

common files, 34
summation function DS, 22

restriction, 23
symbol names, 11

underscore, 11
symbol types, 11
symbolic index range, 17
symbols

order, 13
Symme command, ix, 61, 77
Synonym statement, 86, 126
syntax

logical, 57
avoiding ambiguous, 58

substitution command, 61

table
antiparticle, 103

default, 103, 104
character

definition, 103

Index 175

tables (T expressions), 29
arguments are automatic dum-

mies, 29
Compo, 70
essentially numerical arguments,

29
nested entries, 29
printing the nesting depth, 35
rules for entries, 29, 30

tape7, common files, 33
tape8, Fortran output, 37
tape9, blocks, 8, 10
terms

50,000 is a big expression, 35
collecting, 90
factors, 29
grouping, 4
multiplications, performance, 92

text output file, 2
theta function DT, 22
time

merging, 130
multiplications, terms, 92

Trace argument for Gammas command,
114

trace, anomalous, "A gammas op-
tion, 111

traces and gamma strings, 108
traditional sorting, 129
Traditional statement, 127, 135
truncation

Integ, ix, 19
power, 15
vectors, with =z, 15

types
algebraic symbol, 11

real, imaginary, complex, 14
function, 11

real, imaginary, complex, un-
defined conjugation, 15

name defaults, 13
noncommuting

functions, 12

order, internal, 63

Ug, Ubg Dirac spinor functions, 21,
95

undefined
function conjugation type u, 15,

20
X expression conjugation, 21

underscore, 17
in symbol names, 11

unification "U of G-strings, 112
Chisholm’s equation, 112
when advantageous, 112

variables
commuting, 12
ordering of, 3

vector pair elimination "P gammas
option, 112

vector substitution, 47
vectors, 12

arguments, 13
dummies for components, 27
factorization, 13
rules, 12

algebra, 16
components, 14

truncation with =z, 15
vertices, graph

names, 99
character composition, 99

parameters, 99

W boson self-energy, 100
Weyl tensor function Epf, 21
Write statement, 33, 127

not delimited by *yep, *next,
33

X expressions, 25
arguments, 27

rules, 25
conjugation undefined, 21
levels required, 91

176 Index

number of (500), 26
order of definition, 25
printing the nesting depth, 35

Z expressions, 3
arguments, 26

Z files, 31
indexed, 32
printout, 37

